- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- I am looking at the integration of ##(x+2)^2## with respect to ##x##
- Relevant Equations
- Integration
Ok i know that,
##\int (x+2)^2 dx= \int [x^2+4x+4] dx= \dfrac{x^3}{3}+2x^2+4x+c##
when i use substitution;
i.e letting ##u=x+2## i end up with;
##\int u^2 du= \dfrac{u^3}{3}+c=\dfrac {(x+2)^3}{3}+c=\dfrac{x^3+6x^2+12x+8}{3} +c##
clearly the two solutions are not the same...
appreciate your insight...which approach is more concrete? note that when we differentiate both solutions we get the same function i.e ##x^2+4x+4##.
##\int (x+2)^2 dx= \int [x^2+4x+4] dx= \dfrac{x^3}{3}+2x^2+4x+c##
when i use substitution;
i.e letting ##u=x+2## i end up with;
##\int u^2 du= \dfrac{u^3}{3}+c=\dfrac {(x+2)^3}{3}+c=\dfrac{x^3+6x^2+12x+8}{3} +c##
clearly the two solutions are not the same...
appreciate your insight...which approach is more concrete? note that when we differentiate both solutions we get the same function i.e ##x^2+4x+4##.