- #1
wnvl2
- 49
- 13
There is no possible measurement, no matter how clever, that can measure the one way speed of light. It is a synchronization convention. In this topic I would like to apply this idea on a specific case.
I have a microwave oven with width L. In this oven I have a standing wave.
$$E(t,x)=E cos(\omega t) sin( k x) $$
with ##k = \frac{\pi}{L}## and ##c = \frac{\omega}{k}##.
We can split this standing wave into a left and a right moving wave.
$$\frac{E}{2} sin (\omega t - kx) + \frac{E}{2} sin (\omega t + kx)$$
Now I want to see what happens if we switch to another synchronization where the speed of the right-moving wave is
##c^{+}## is ##\frac{c}{2\epsilon}## and the speed of the left moving wave ##c^{-}## is ##\frac{c}{2(1-\epsilon)}##.
The Reisenbach synchronisation transformation looks like
$$ \begin{bmatrix}
ct \\
x \\
y \\
z \\
\end{bmatrix} = \Lambda \begin{bmatrix}
ct' \\
x' \\
y' \\
z' \\
\end{bmatrix}$$
with $$ \Lambda = \begin{bmatrix}
1 & \kappa & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix} $$
and ##\kappa=2 \epsilon-1##
This means that the electromagnetic field tensor
$$F^{\mu \nu} = \begin{bmatrix}
0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c}\\
\frac{E_x}{c} & 0 & -B_z & B_y\\
\frac{E_y}{c} & B_z & 0 & -B_x\\
\frac{E_z}{c} & -B_y & B_x & 0\\
\end{bmatrix} $$
will transform according to
$$\Lambda^T F^{\mu \nu} \Lambda $$
This means that ##E_x## transforms into ##\kappa E_x##. I assume that in the xyz frame the magnetic field is everywhere 0.
The waves in the new frame x'y'z' transform into
$$\frac{\kappa E}{2} sin (\omega (t'-\frac{\kappa x'}{c}) - kx') + \frac{E}{2} sin (\omega (t'-\frac{\kappa x'}{c}) + kx')$$
$$\frac{\kappa E}{2} sin (\omega t'-(\omega\frac{\kappa}{c} - k)x') + \frac{E}{2} sin (\omega t'- (\omega \frac{\kappa}{c} + k)x')$$
A first conclusion is that I have not anymore a standing wave.
Is this reasoning already correct?
I have a microwave oven with width L. In this oven I have a standing wave.
$$E(t,x)=E cos(\omega t) sin( k x) $$
with ##k = \frac{\pi}{L}## and ##c = \frac{\omega}{k}##.
We can split this standing wave into a left and a right moving wave.
$$\frac{E}{2} sin (\omega t - kx) + \frac{E}{2} sin (\omega t + kx)$$
Now I want to see what happens if we switch to another synchronization where the speed of the right-moving wave is
##c^{+}## is ##\frac{c}{2\epsilon}## and the speed of the left moving wave ##c^{-}## is ##\frac{c}{2(1-\epsilon)}##.
The Reisenbach synchronisation transformation looks like
$$ \begin{bmatrix}
ct \\
x \\
y \\
z \\
\end{bmatrix} = \Lambda \begin{bmatrix}
ct' \\
x' \\
y' \\
z' \\
\end{bmatrix}$$
with $$ \Lambda = \begin{bmatrix}
1 & \kappa & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix} $$
and ##\kappa=2 \epsilon-1##
This means that the electromagnetic field tensor
$$F^{\mu \nu} = \begin{bmatrix}
0 & -\frac{E_x}{c} & -\frac{E_y}{c} & -\frac{E_z}{c}\\
\frac{E_x}{c} & 0 & -B_z & B_y\\
\frac{E_y}{c} & B_z & 0 & -B_x\\
\frac{E_z}{c} & -B_y & B_x & 0\\
\end{bmatrix} $$
will transform according to
$$\Lambda^T F^{\mu \nu} \Lambda $$
This means that ##E_x## transforms into ##\kappa E_x##. I assume that in the xyz frame the magnetic field is everywhere 0.
The waves in the new frame x'y'z' transform into
$$\frac{\kappa E}{2} sin (\omega (t'-\frac{\kappa x'}{c}) - kx') + \frac{E}{2} sin (\omega (t'-\frac{\kappa x'}{c}) + kx')$$
$$\frac{\kappa E}{2} sin (\omega t'-(\omega\frac{\kappa}{c} - k)x') + \frac{E}{2} sin (\omega t'- (\omega \frac{\kappa}{c} + k)x')$$
A first conclusion is that I have not anymore a standing wave.
Is this reasoning already correct?
Last edited: