- #1
Nusc
- 760
- 2
Homework Statement
[tex]
\frac{dx}{dt} =\frac{ -x}{(t-1+e^{-x})}
[/tex]
Show that an approximate solution leads to,
[tex]
\frac{dx}{dt} = -\frac{ 1}{1-c1} [c1+(c2 + \frac{c2-c1/2}{1-c1})*t + O(t^3)]
[/tex]
Homework Equations
The Attempt at a Solution
The first equation is not separable.
To approximate, assume
[tex]
x = c1*t+c2*t^2 + O(t^3)
[/tex]
Hence
[tex]
dx/dt = c1 + 2*c2*t + O(t^2).
[/tex]
If I equate
[tex]
dx/dt = c1 + 2*c2*t + O(t^2).
[/tex]
and
[tex]
\frac{dx}{dt} =\frac{ -x}{(t-1+e^{-x})}
[/tex]
Should I immediately taylor expand the exponential?