- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have \begin{equation*}A:=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix} \ \text{ and } \ z^{(0)}:=\begin{pmatrix}1\\ 1 \\ 1\end{pmatrix}\end{equation*}
I want to approximate the biggest (in absolute value) eigenvalue of $A$ with the power method (4 steps using the infinity norm).
I have done the following:
From the power method we have that $z^{(k+1)} = \frac{Az^{(k)}}{\|Az^{(k)}\|}$ and it holds that $\|Az^{(k)}\|\rightarrow |\lambda_m|$, where $\lambda_m$ is the largest in absolute value eigenvalue of $A$.
We have that \begin{equation*}Az^{(0)}=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix}\begin{pmatrix}1\\ 1 \\ 1\end{pmatrix}=\begin{pmatrix}-99.7\\ 19.8 \\ -20.1\end{pmatrix} \Rightarrow \|Az^{(0)}\|_{\infty}=\max_{i=1}^3|(Az^{(0)})_i|=99.7\end{equation*}
So, we get \begin{equation*}z^{(1)} = \frac{Az^{(0)}}{\|Az^{(0)}\|}=\frac{1}{99.7}\begin{pmatrix}-99.7\\ 19.8 \\ -20.1\end{pmatrix}=\begin{pmatrix}-1\\ 0.198596 \\ -0.201605\end{pmatrix}\end{equation*}
We have that \begin{equation*}Az^{(1)}=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix}\begin{pmatrix}-1\\ 0.198596 \\ -0.201605\end{pmatrix}=\begin{pmatrix}0.198589\\ 0.131897 \\ 0.208123\end{pmatrix} \Rightarrow \|Az^{(1)}\|_{\infty}=\max_{i=1}^3|(Az^{(1)})_i|=0.208123\end{equation*}
So, we get \begin{equation*}z^{(2)} = \frac{Az^{(1)}}{\|Az^{(1)}\|}=\frac{1}{0.208123}\begin{pmatrix}0.198589\\ 0.131897 \\ 0.208123\end{pmatrix}=\begin{pmatrix}0.954191\\ 0.633745 \\ 1\end{pmatrix}\end{equation*}
We have that \begin{equation*}Az^{(2)}=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix}\begin{pmatrix}0.954191\\ 0.633745 \\ 1\end{pmatrix}=\begin{pmatrix}-77.0607\\ 15.4049 \\ -15.7278\end{pmatrix} \Rightarrow \|Az^{(2)}\|_{\infty}=\max_{i=1}^3|(Az^{(2)})_i|=77.0607\end{equation*}
So, we get \begin{equation*}z^{(3)} = \frac{Az^{(2)}}{\|Az^{(2)}\|}=\frac{1}{77.0607}\begin{pmatrix}-77.0607\\ 15.4049 \\ -15.7278\end{pmatrix}=\begin{pmatrix}-1\\ 0.199906 \\ -0.204096\end{pmatrix}\end{equation*}
We have that \begin{equation*}Az^{(3)}=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix}\begin{pmatrix}-1\\ 0.199906 \\ -0.204096\end{pmatrix}=\begin{pmatrix}0.200502\\ 0.1298 \\ 0.2106\end{pmatrix} \Rightarrow \|Az^{(3)}\|_{\infty}=\max_{i=1}^3|(Az^{(3)})_i|=0.2106\end{equation*}
So, we get \begin{equation*}z^{(4)}= \frac{Az^{(3)}}{\|Az^{(3)}\|}=\frac{1}{0.2106}\begin{pmatrix}0.200502\\ 0.1298 \\ 0.2106\end{pmatrix}=\begin{pmatrix}0.952051\\ 0.616334 \\ 1\end{pmatrix}\end{equation*}
We have that \begin{equation*}Az^{(4)}=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix}\begin{pmatrix}0.952051\\ 0.616334 \\ 1\end{pmatrix}=\begin{pmatrix}-75.9847\\ 15.196 \\ -15.52\end{pmatrix} \Rightarrow \|Az^{(4)}\|_{\infty}=\max_{i=1}^3|(Az^{(4)})_i|=75.9847\end{equation*}
Therefore we have that $\|Az^{(4)}\|_{\infty}=75.9847\rightarrow |\lambda_m|$, so an approximation to the largest in absolute value eigenvalue is $75.9847$.
According to Wolfram the largent eigenvalue is $4$. Have I done something wrong? Or do I get such a large approximation? (Wondering)
We have \begin{equation*}A:=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix} \ \text{ and } \ z^{(0)}:=\begin{pmatrix}1\\ 1 \\ 1\end{pmatrix}\end{equation*}
I want to approximate the biggest (in absolute value) eigenvalue of $A$ with the power method (4 steps using the infinity norm).
I have done the following:
From the power method we have that $z^{(k+1)} = \frac{Az^{(k)}}{\|Az^{(k)}\|}$ and it holds that $\|Az^{(k)}\|\rightarrow |\lambda_m|$, where $\lambda_m$ is the largest in absolute value eigenvalue of $A$.
We have that \begin{equation*}Az^{(0)}=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix}\begin{pmatrix}1\\ 1 \\ 1\end{pmatrix}=\begin{pmatrix}-99.7\\ 19.8 \\ -20.1\end{pmatrix} \Rightarrow \|Az^{(0)}\|_{\infty}=\max_{i=1}^3|(Az^{(0)})_i|=99.7\end{equation*}
So, we get \begin{equation*}z^{(1)} = \frac{Az^{(0)}}{\|Az^{(0)}\|}=\frac{1}{99.7}\begin{pmatrix}-99.7\\ 19.8 \\ -20.1\end{pmatrix}=\begin{pmatrix}-1\\ 0.198596 \\ -0.201605\end{pmatrix}\end{equation*}
We have that \begin{equation*}Az^{(1)}=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix}\begin{pmatrix}-1\\ 0.198596 \\ -0.201605\end{pmatrix}=\begin{pmatrix}0.198589\\ 0.131897 \\ 0.208123\end{pmatrix} \Rightarrow \|Az^{(1)}\|_{\infty}=\max_{i=1}^3|(Az^{(1)})_i|=0.208123\end{equation*}
So, we get \begin{equation*}z^{(2)} = \frac{Az^{(1)}}{\|Az^{(1)}\|}=\frac{1}{0.208123}\begin{pmatrix}0.198589\\ 0.131897 \\ 0.208123\end{pmatrix}=\begin{pmatrix}0.954191\\ 0.633745 \\ 1\end{pmatrix}\end{equation*}
We have that \begin{equation*}Az^{(2)}=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix}\begin{pmatrix}0.954191\\ 0.633745 \\ 1\end{pmatrix}=\begin{pmatrix}-77.0607\\ 15.4049 \\ -15.7278\end{pmatrix} \Rightarrow \|Az^{(2)}\|_{\infty}=\max_{i=1}^3|(Az^{(2)})_i|=77.0607\end{equation*}
So, we get \begin{equation*}z^{(3)} = \frac{Az^{(2)}}{\|Az^{(2)}\|}=\frac{1}{77.0607}\begin{pmatrix}-77.0607\\ 15.4049 \\ -15.7278\end{pmatrix}=\begin{pmatrix}-1\\ 0.199906 \\ -0.204096\end{pmatrix}\end{equation*}
We have that \begin{equation*}Az^{(3)}=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix}\begin{pmatrix}-1\\ 0.199906 \\ -0.204096\end{pmatrix}=\begin{pmatrix}0.200502\\ 0.1298 \\ 0.2106\end{pmatrix} \Rightarrow \|Az^{(3)}\|_{\infty}=\max_{i=1}^3|(Az^{(3)})_i|=0.2106\end{equation*}
So, we get \begin{equation*}z^{(4)}= \frac{Az^{(3)}}{\|Az^{(3)}\|}=\frac{1}{0.2106}\begin{pmatrix}0.200502\\ 0.1298 \\ 0.2106\end{pmatrix}=\begin{pmatrix}0.952051\\ 0.616334 \\ 1\end{pmatrix}\end{equation*}
We have that \begin{equation*}Az^{(4)}=\begin{pmatrix}-5.7 & -61.1 & -32.9 \\ 0.8 & 11.9 & 7.1 \\ -1.1 & -11.8 & -7.2\end{pmatrix}\begin{pmatrix}0.952051\\ 0.616334 \\ 1\end{pmatrix}=\begin{pmatrix}-75.9847\\ 15.196 \\ -15.52\end{pmatrix} \Rightarrow \|Az^{(4)}\|_{\infty}=\max_{i=1}^3|(Az^{(4)})_i|=75.9847\end{equation*}
Therefore we have that $\|Az^{(4)}\|_{\infty}=75.9847\rightarrow |\lambda_m|$, so an approximation to the largest in absolute value eigenvalue is $75.9847$.
According to Wolfram the largent eigenvalue is $4$. Have I done something wrong? Or do I get such a large approximation? (Wondering)