Approximations in Chemical Equilibrium (add a weak acid HA into pure water)

In summary: The cubic in ##p## can be simplified to obtain the usual result that the equilibrium concentration of ##\text{H}_3\text{O}^+## is equal to the initial concentration of ##\text{H}_3\text{O}^+##.In summary, at equilibrium, the concentration of ##\text{H}_3\text{O}^+## is equal to the initial concentration of ##\text{H}_3\text{O}^+##.
  • #1
SilverSoldier
26
3
Suppose we add a weak acid HA into pure water, so that upon addition its initial concentration is c. The following equilibria should establish in the system. $$\text{HA}+\text{H}_2\text{O}\rightleftharpoons\text{H}_3\text{O}^++\text{A}^-$$ $$2\text{H}_2\text{O}\rightleftharpoons\text{H}_3\text{O}^++\text{OH}^−$$ Let ##K_a## and ##K_w## respectively be the equilibrium constants for these processes. We can express the composition of the system before and after equilibrium as follows. Let ##a## be the concentration of ##\text{H}_3\text{O}^+## and ##\text{OH}^−## already present in the system due to the autoionization of water initially; i.e., ##a=\sqrt{K_w}##.

##\text{HA}##​
##\text{H}_3\text{O}^+##​
##\text{A}^-##​
Initial concentration
##c##​
##a##​
-​
Change in concentration
##-p##​
##+p##​
##+p##​
Equilibrium concentration
##c-p##​
##a+p+q##​
##p##​

##\text{H}_2\text{O}##​
##\text{H}_3\text{O}^+##​
##\text{OH}^−##​
Initial concentration
-​
##a##​
##a##​
Change in concentration
-​
##+q##​
##+q##​
Equilibrium concentration
-​
##a+p+q##​
##a+q##​

Thus, we can obtain the following expressions at equilibrium. $$K_w=\left(a+p+q\right)\left(a+q\right)$$ $$K_a=\dfrac{\left(a+p+q\right)\left(p\right)}{c-p}$$ Taking ##r=a+q##, we obtain the following cubic equations in ##p## and ##r##. $$p^3K_a+p^2\left(K_a^2−K_w−cK_a\right)−2pcK_a^2+c^2K_a^2=0$$ $$r^3K_a+r^2\left(cK_a+K_w\right)−rK_aK_w−K_w^2=0$$ Now, as the acid begins to dissociate, because there is ##\text{H}_3\text{O}^+## already present in the system, the reverse "association" process should start off faster, so it should take lesser time for its rate to increase up to a significant value bringing the system to equilibrium, allowing time only for fewer molecules of the acid to dissociate.

At the same time, because ##\text{H}_3\text{O}^+## is being "removed" by the reverse autoionization process as it forms, the system should be trying to keep the ##\text{H}_3\text{O}^+## concentration below whatever value it would otherwise have risen to in the absence of autoionization.

The fact that the reverse autoionization process is triggered as the reaction proceeds should mean that ##\text{OH}^-## ions in the system should be being consumed, so by the time equilibrium is attained, its concentration must be lesser than the initial value. This means that ##r## in the equation above must be less than ##a##, so if ##a## can be considered small, then ##r^3## must be even smaller, and the effect of the ##r^3## term in the equation should be negligible. It should therefore be possible the reduce it to $$r^2\left(cK_a+K_w\right)−rK_aK_w−K_w^2=0$$ The following is a plot I made of the above equations with the ##x## axis representing ##c## and ##y## axis representing ##r##. The ##r^3## term is neglected in the orange curve, and not neglected in the black curve (##K_a=5## and ##K_w=0.5## here).

geogebra-export.png

The orange curve greatly deviates from the black curve for small concentrations. Is this possible, because ##r## must always be less than ##a## for all concentrations? Have I made an error somewhere? Is it wrong to neglect the ##r^3## term?

By the way, I have not seen calculations being made taking the ##\text{H}_3\text{O}^+## and ##\text{OH}^-## concentrations already present in the system initially into consideration. Where the autoionization of water is not neglected it is always assumed that there are no ##\text{H}_3\text{O}^+## and ##\text{OH}^-## ions present in the system before equilibrium. Why is this? Is there anything wrong with saying it is already present?
 
Last edited:
Chemistry news on Phys.org
  • #2
In general when systematically finding equilibrium nobody cares about initial concentrations of anything. Total (analytical) concentrations and mass balances are all that matters (apart from Ka/Kb and charge balance).

For nitpickers one of the mass balances should be that of water itself, but it makes the calculations a bit more difficult, as it forces the solver into mass balances of elements, not of substances. The most general equilibirum programs do that, those specialized for pH calculations don't, as it is enough to add Kw to make sure autoionization of water is part of the system.

While you approach - starting with ICE tables - should in principle produce the same results, I have never seen it used that way. The general approach is actually simpler and easier to use.
 
  • Informative
Likes BillTre and berkeman
  • #3
Borek said:
In general when systematically finding equilibrium nobody cares about initial concentrations of anything. Total (analytical) concentrations and mass balances are all that matters (apart from Ka/Kb and charge balance).

For nitpickers one of the mass balances should be that of water itself, but it makes the calculations a bit more difficult, as it forces the solver into mass balances of elements, not of substances. The most general equilibirum programs do that, those specialized for pH calculations don't, as it is enough to add Kw to make sure autoionization of water is part of the system.

While you approach - starting with ICE tables - should in principle produce the same results, I have never seen it used that way. The general approach is actually simpler and easier to use.
How are we able to simplify the above cubics to simpler equations that can be solved? How do we, for example, simplify the cubic in ##p## to obtain the usual result that ##p=\sqrt{cK_a}##?
 
  • #4
Look here for a review of methods used: https://www.chembuddy.com/?left=pH-calculation&right=toc

Broadly speaking the main idea is the "5% rule" - if in a sum x+y one component (say y) is less than 5% of the other we try to ignore it and assume x+y≈x. That typically decreases the degree of the resulting polynomial.
 

FAQ: Approximations in Chemical Equilibrium (add a weak acid HA into pure water)

What is an approximation in chemical equilibrium?

An approximation in chemical equilibrium refers to a simplified mathematical approach used to estimate the concentrations of reactants and products in a chemical reaction. This is often necessary when the exact solution is too complex to calculate or when experimental data is not available.

Why is it necessary to add a weak acid HA into pure water in chemical equilibrium calculations?

Adding a weak acid HA into pure water allows for the formation of a buffer solution, which helps maintain a relatively constant pH. This is important in chemical equilibrium calculations as it ensures that the concentrations of reactants and products are not significantly affected by changes in pH.

How does the addition of a weak acid HA affect the equilibrium constant of a reaction?

The addition of a weak acid HA can affect the equilibrium constant of a reaction by shifting the equilibrium position towards the products or the reactants, depending on the relative strengths of the weak acid and the conjugate base. This can ultimately affect the concentrations of reactants and products in the equilibrium equation.

Can the approximation method be used for all types of chemical reactions?

No, the approximation method is typically used for simple reactions involving weak acids or bases, as well as reactions that are close to equilibrium. For more complex reactions, a more accurate approach, such as solving the equilibrium equation numerically, may be necessary.

How can the accuracy of an approximation in chemical equilibrium be improved?

The accuracy of an approximation in chemical equilibrium can be improved by using more precise values for the equilibrium constant and initial concentrations, as well as by considering the effects of temperature and pressure on the reaction. Additionally, using a more advanced mathematical approach, such as the quadratic formula, can also improve the accuracy of the approximation.

Similar threads

Back
Top