- #1
Hill
- 719
- 569
My understanding is (was) that "virtual particles" is a computational concept used in perturbation calculations in QFT e.g. in Feynman diagrams. This understanding is in conflict with the following note in Quantum Field Theory for the Gifted Amateur by Tom Lancaster and Stephen J. Blundell:
and again,All photons that we detect actually interact with electrons in detectors such as the eye. They must all then, in some sense, be virtual! How can this be? We know that particles that are offshell have the range over which they can propagate limited by the extent to which they’re off-shell. If we see photons that have travelled from distant stars they have to be pretty close to being on-shell. We’ve seen before that when a particle is on-shell we hit the pole of the particle’s propagator. Therefore photons from Andromeda, visible on a moonless night, must be so close to the pole that there can’t be any observable effects from being off-shell. (p.348)
Is it so? Can't similar reasoning be applied to other particles?we know that virtual photons (and remember that all photons are, to some extent, virtual photons) couple to a fermion line at both ends of their trajectory. (p.362)