- #1
JPBenowitz
- 144
- 2
As it would appear the universe is spatially flat, a Euclidean Plane. If this is true then how could black holes exist? Doesn't this necessitate that if black holes are embedded in flat space that the mean curvature must be zero and thus all black holes are minimal surfaces? So, if black holes are catenoids on the surface of a euclidean plane then where the heck would all of the matter go?? Puzzling indeed. Then again the torus has zero Gaussian Curvature and classifies as a flat surface... What is the possibility that the universe is a torus with catenoids scattered all over it?
Last edited: