Are both sample spaces the same or do they mean different things?

  • #1
vcsharp2003
897
177
Homework Statement
A coin is tossed two times. What will be the sample space for this experiment?
Relevant Equations
None
I came up with two different forms of the sample space S, but I am not sure if they mean the same thing or the first one could mean something different. H stands for heads showing up and T stands for tails showing up.

$$ S = \{ \{i,j\}: i \in \{H,T\}, j \in \{H,T\} \} $$

$$ S = \{ (i,j) : i \in \{H,T\}, j \in \{H,T\} \} $$
 
Physics news on Phys.org
  • #2
vcsharp2003 said:
Homework Statement:: A coin is tossed two times. What will be the sample space for this experiment?
Relevant Equations:: None

I came up with two different forms of the sample space S, but I am not sure if they mean the same thing or the first one could mean something different. H stands for heads showing up and T stands for tails showing up.

$$ S = \{ \{i,j\}: i \in \{H,T\}, j \in \{H,T\} \} $$

$$ S = \{ (i,j) : i \in \{H,T\}, j \in \{H,T\} \} $$
The order in which members of a set are listed is irrelevant, and multiple occurences of the same element in the list are redundant, so the first is [tex]\{\{H\}, \{H,T\}, \{T\} \}.[/tex] Can this be right? If the two tosses have different outcomes, should we be able to distinguish between a head followed by a tail as opposed to a tail followed by a head?
 
  • Like
Likes FactChecker and vcsharp2003
  • #3
pasmith said:
The order in which members of a set are listed is irrelevant, and multiple occurences of the same element in the list are redundant, so the first is [tex]\{\{H\}, \{H,T\}, \{T\} \}.[/tex] Can this be right? If the two tosses have different outcomes, should we be able to distinguish between a head followed by a tail as opposed to a tail followed by a head?
Ok, I get it.

If the first form is used then we will get one of the members of set S as ##\{ H,H \}## which is the same as ##\{ H\}##. Therefore, the first form is not correct and the second form is correct.

It seems to me that we're essentially trying to get Cartesian Product as the set S i.e. ##\{ H,T\} \times \{ H,T\} ## for which we always use the second form. Also we know that in Cartesian Product the order is important, which would account for order of H and T in a pair of values.
 
Last edited:
  • #4
vcsharp2003 said:
Homework Statement:: A coin is tossed two times. What will be the sample space for this experiment?
Relevant Equations:: None

I came up with two different forms of the sample space S, but I am not sure if they mean the same thing or the first one could mean something different. H stands for heads showing up and T stands for tails showing up.

$$ S = \{ \{i,j\}: i \in \{H,T\}, j \in \{H,T\} \} $$

$$ S = \{ (i,j) : i \in \{H,T\}, j \in \{H,T\} \} $$
Your "two different forms" are actually identical.
Edit: I see now that the first version has ordered pairs (in parentheses) and the second has sets (in braces).
pasmith said:
The order in which members of a set are listed is irrelevant, and multiple occurences of the same element in the list are redundant, so the first is [tex]\{\{H\}, \{H,T\}, \{T\} \}.[/tex]
@pasmith, I'm not what you're trying to say here, but the sample space should be a set of events, not a set of sets. IOW, looking like this: ##\{ (H, H), (H, T), (T, H), (T, T) \}##. Each of the listed pairs (events) is equally likely.
 
Last edited:
  • Like
Likes vcsharp2003
  • #5
Mark44 said:
Your "two different forms" are actually identical.

The first form uses braces [itex]\{i,j\}[/itex]. That indicates a set, not an ordered pair. The second form is correct.
 
  • Like
Likes vcsharp2003
  • #6
pasmith said:
The first form uses braces {i,j}.
A detail that my old eyes missed.
 

Similar threads

Back
Top