- #1
karush
Gold Member
MHB
- 3,269
- 5
Just curious are cubic functions dirvel from just having the zeros, does that always determine where the local min/max is. I notice many cubic graphs given on homework show where the zeros are but the local min/max is not given.
For example
$$y=\left(x-4\right)\left(x+1\right)(x+2)={x}^{3}-{x}^{2 }-10x-8$$
$$y'=3{x}^{2 }-2x-10$$
$y'=0$ is $ - 1.5226,2.1893$ and min=-24.1926 max=1.3778
So I presume the local min/max are fixed values given the zeros
For example
$$y=\left(x-4\right)\left(x+1\right)(x+2)={x}^{3}-{x}^{2 }-10x-8$$
$$y'=3{x}^{2 }-2x-10$$
$y'=0$ is $ - 1.5226,2.1893$ and min=-24.1926 max=1.3778
So I presume the local min/max are fixed values given the zeros
Last edited: