- #36
Rising Eagle
- 38
- 0
Rising Eagle said:We could assign the vectors to be linear functionals, tensors, polynomial or Fourier (sin, cos, e) functions, rows or columns of a matrix or some other discrete functions, normally distributed random variables, gradient and other linear operators; anything that obeys the linearity axioms. We may even assign the vectors to be the Real numbers. Name other examples if you can think of them.
I believe we can add to the list Linear Time Invariant and Linear Shift Invariant systems as studied in engineering, random processes, matrices, many different types of functionals, and, interestingly homogeneous linear and differential equations too. I never thought of it before, but equations themselves can be added and scaled and so qualify. Maybe they don't even have to be linear or homogeneous either; just any general equation. Not sure about inequalities or greater than/less than relationships, though.
Rising Eagle said:I vote for Linear Elements as the term for elements of a Linear Space. And I would like to call measurements of Scalar Quantities (scalar values) Affinitors or something similar if Numbers turns out not to be the best model for such measurements.
Another possibility is to call the elements of a Linear Space a Linear Form as a take off on 1-form or differential form. Any linear element in general would be a Linear Form.