- #1
- 1,008
- 7
Here's an interesting question. I'm aware of closed forms of cubic polynomials that go through 1 or 2 specific (x,y) points. Are there closed form versions for 3 or 4 points?
1 pt: [tex]y = a(x-x_0)^3 + b(x-x_0)^2 + c(x-x_0) + y_0[/tex]
2 pt: [tex]y = a(x-x_0)^2(x-x_1)\ +\ b(x-x_0)(x-x_1)^2 \ +\ \frac{y_0(x-x_1)^3}{(x_0-x_1)^3} \ +\ \frac{y_1(x-x_0)^3}{(x_1-x_0)^3}[/tex]
3 pt: [tex]y = \ ?[/tex]
4 pt: [tex]y = \ ?[/tex]
I don't think there are.
1 pt: [tex]y = a(x-x_0)^3 + b(x-x_0)^2 + c(x-x_0) + y_0[/tex]
2 pt: [tex]y = a(x-x_0)^2(x-x_1)\ +\ b(x-x_0)(x-x_1)^2 \ +\ \frac{y_0(x-x_1)^3}{(x_0-x_1)^3} \ +\ \frac{y_1(x-x_0)^3}{(x_1-x_0)^3}[/tex]
3 pt: [tex]y = \ ?[/tex]
4 pt: [tex]y = \ ?[/tex]
I don't think there are.
Last edited: