- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
Here is this week's POTW:
-----
Let $x_1, x_2,\dots,x_n$ be differentiable (real-valued) functions of a single variable $t$ which satisfy
\begin{align*}
\d{x_1}{t}&=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n \\
\d{x_2}{t}&=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n \\
\vdots \\
\d{x_n}{t}&=a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n
\end{align*}
for some constants $a_{ij}>0$. Suppose that for all $i, \; x_i(t)\to 0$ as $t\to\infty$. Are the functions $x_1,x_2,\dots,x_n$ necessarily linearly independent?
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $x_1, x_2,\dots,x_n$ be differentiable (real-valued) functions of a single variable $t$ which satisfy
\begin{align*}
\d{x_1}{t}&=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n \\
\d{x_2}{t}&=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n \\
\vdots \\
\d{x_n}{t}&=a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n
\end{align*}
for some constants $a_{ij}>0$. Suppose that for all $i, \; x_i(t)\to 0$ as $t\to\infty$. Are the functions $x_1,x_2,\dots,x_n$ necessarily linearly independent?
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!