- #1
pondzo
- 169
- 0
Homework Statement
Write ##C_3\langle x|x^3=1\rangle## and ##C_2=\langle y|y^2=1\rangle##
Let ##h_1,h_2:C_2\rightarrow \text{ Aut}(C_3\times C_3)## be the following homomorphisms:
$$h_1(y)(x^a,x^b)=(x^{-a},x^{-b})~;~~~~~~h_2(y)(x^a,x^b)=(x^b,x^a)$$
Put ##G(1)=(C_3\times C_3)\rtimes_{h_1}C_2 \text{ and } G(2)=(C_3\times C_3)\rtimes_{h_2}C_2##
Is ##G(1)\cong G(2)##? If so write down an explicit isomorphism. If not, explain why not.
Homework Equations
I think the group operation for this semidirect products is:
$$\cdot ~:~(C_3\times C_3)\rtimes_{h_i}C_2~~~~~~~i=\{1,2\}$$ $$ \text{ Where } ((x_1,x_2),y)\cdot ((x_1',x_2'),y')=((x_1,x_2)h(y)(x_1',x_2'),yy')$$ $$ \text{ for } ((x_1,x_2),y),((x_1',x_2'),y')\in (C_3\times C_3)\rtimes_{h_i}C_2$$
The Attempt at a Solution
First of all, I'm not too sure if I have the elements in each group in the correct form or if I defined the group operation correctly. Assuming I have done these two things correctly, I will continue with my attempt of a solution.
Write ##C_3\times C_3=\langle x_1,x_2|x_1^3=x_2^3=1, x_2x_1=x_1x_2\rangle##.
Let ##Y=((1,1),y)## and ##X=((x_1,x_2),1)##
I will now do the crucial calculation, ##YX##, in both G(1) and G(2):
Crucial calculation in ##G(1)##:
##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=(((x_1)^{-1},(x_2)^{-1}),y)=(((x_1)^2,(x_2)^2),y)=X^2Y##
Thus ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle\cong D_6 ## (Binary dihedral group of order 6)
Crucial calculation in ##G(2)##:
##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=((x_1,x_2),y)=XY##
Thus ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle \cong C_3\times C_2##
So ##G(1)\ncong G(2)##.
I am not sure If my final conclusions about G(1) and G(2) are correct. I.e. I'm not sure if I can write ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle## and ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle##