- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $f:M\rightarrow N$, $A,B\subset N$. I want to check if the following statements about the preimages are correct:
Could you give me a hint about the last statement?
(Wondering)
Let $f:M\rightarrow N$, $A,B\subset N$. I want to check if the following statements about the preimages are correct:
- $f^{-1}(A\cup B)=f^{-1}(A)\cup f^{-1}(B)$
- $f^{-1}(\overline{A})=\overline{f^{-1}(A)}$
- $f^{-1}(A\setminus B)=f^{-1}(A)\setminus f^{-1}(B)$
- $A\cap B=\emptyset \Rightarrow f^{-1}(A)\cap f^{-1}(B)=\emptyset$
- $A\subseteq B \Rightarrow f^{-1}(B)\subseteq f^{-1}(A)$
- Let $x\in f^{-1}(A\cup B)$. Then it follows that $f(x)\in A\cup B$. This means that either $f(x)\in A$ or $f(x)\in B$, so $x\in f^{-1}(A)$ or $x\in f^{-1}(B)$. It follows that $x\in f^{-1}(A)\cup f^{-1}(B)$.
We have shown that $\displaystyle{f^{-1}(A\cup B)\subseteq f^{-1}(A)\cup f^{-1}(B)}$. Let $x\in f^{-1}(A)\cup f^{-1}(B)$. Then we either have that $x\in f^{-1}(A)$ or $x\in f^{-1}(B)$, so either $f(x)\in A$ or $f(x)\in B$. This means that $f(x)\in A\cup B$. It follows that $x\in f^{-1}(A\cup B)$.
We have shown that $\displaystyle{f^{-1}(A)\cup f^{-1}(B) \subseteq f^{-1}(A\cup B)}$. From these two inclusions it follows that $\displaystyle{f^{-1}(A\cup B)=f^{-1}(A)\cup f^{-1}(B)}$.
$$$$
- $$x\in f^{-1}(\overline{A}) \iff f(x) \in \overline{A} \iff f(x) \notin A \iff x\notin f^{-1}(A) \iff x\in \overline{f^{-1}(A)}$$
Therefore, we get that $f^{-1}(\overline{A})=\overline{f^{-1}(A)}$.
$$$$
- $$x\in f^{-1}(A\setminus B) \iff f(x)\in A\setminus B \iff f(x) \in A \text{ AND } f(x) \notin B \iff x\in f^{-1}(A) \text{ AND } x\notin f^{-1}(B) \\ \iff x\in f^{-1}(A)\setminus f^{-1}(B)$$
Therefore, we get that $f^{-1}(A\setminus B)=f^{-1}(A)\setminus f^{-1}(B)$.
$$$$
- We suppose that $f^{-1}(A)\cap f^{-1}(B)\neq\emptyset$. That means that $\exists x\in f^{-1}(A)\cap f^{-1}(B)$. That means that $x\in f^{-1}(A)$ AND $x\in f^{-1}(B)$. That implies that $f(x)\in A$ AND $f(x)\in B$, and so $f(x)\in A\cap B$. We get a contradiction since $A\cap B=\emptyset$.
So, that what we supposed at the beginning was wrong, i.e., $f^{-1}(A)\cap f^{-1}(B)\neq\emptyset$ is not correct. So, it must be $f^{-1}(A)\cap f^{-1}(B)=\emptyset$.
Could you give me a hint about the last statement?
(Wondering)
Last edited by a moderator: