Are these two optimization problems equivalent?

In summary, the article explores the relationship between two distinct optimization problems to determine if they yield the same solutions under certain conditions. It examines their formulations, constraints, and objective functions, ultimately concluding that while they may share similarities, they are not universally equivalent due to differences in problem structure and solution approaches.
  • #1
haji-tos
5
1
Hello,

I need help please. I have the following optimization problem defined as

\begin{equation}
\begin{aligned}
& (\mathbf{P1}) \quad \max_{\mathbf{z}} \quad \left| d -\sum_{n=1}^{N} \frac{c_n}{f_n + z_n} \right|^2 \\
& \text{subject to} \quad \sum_{n=1}^{N} \frac{|a_n|^2 \text{Re}(z_n)}{|f_n + z_n|^2} = 0.
\end{aligned}
\end{equation}
where d is a complex scalar, f=[f1,...,fN], c=[c1,...,cN] and a=[a1,...,aN] are complex vectors.

I am trying to solve this so I was thinking to consider

\begin{equation}
y_n=\frac{1}{f_n+z_n}, \quad \forall n \in \{1,...,N\}
\end{equation}
and
\begin{equation}
z_n=\frac{1}{y_n}-f_n, \quad \forall n \in \{1,...,N\}
\end{equation}

and then transform the problem into

\begin{equation}
\begin{aligned}
& (\mathbf{P2}) \quad \max_{\mathbf{y}} \quad \left| d -\sum_{n=1}^{N} c_n y_n \right|^2 \\
& \text{subject to} \quad \sum_{n=1}^{N} |a_n|^2 \text{Re}(y_n^* - f_n y_n y_n^*) = 0.
\end{aligned}
\end{equation}
which is easier to solve using semidefinite programming.
Can you please tell me if the two problems are equivalent ?

Thank you very much !
 
Mathematics news on Phys.org
  • #2
Please delete this post... I made a mistake of posting too early, thinking the LATEX was not showing up. Thanks.
 

Similar threads

Back
Top