- #1
Math100
- 802
- 222
- Homework Statement
- Let ## x ## be a complex cube root of unity, so that ## x^3=1 ## but ## x\neq 1 ##. What are the values of the following?
a) ## 1+x^2+x^4 ##
b) ## 1+x^5+x^{10} ##
c) ## 1+x^9+x^{18} ##
- Relevant Equations
- None.
Given that x is a complex cube root of unity, we have ## x^{3}=1 ## but ## x\neq 1 ##, where the cube roots of unity are ## 1, \omega, \omega^2 ## and ## \omega, \omega^2 ## are the imaginary roots such that ## \omega^3=1, 1+\omega+\omega^2=0 ##.
Now we will consider three cases of the following.
Case #1: Consider the value of ## 1+x^2+x^4 ##.
Let ## x=\omega ## or ## x=\omega^2 ## and ## \omega^3=1 ##,
so ## x^4=\omega^4=\omega\cdot \omega^3=\omega ##.
This gives ## 1+x^2+x^4=1+\omega^2+\omega ## for ## x=\omega ## and ## 1+x^2+x^4=1+(\omega^2)^2+(\omega^2)^4=1+\omega+\omega^2 ## for ## x=\omega^2 ##.
Thus, ## 1+x^2+x^4=1+\omega+\omega^2=0 ##.
Case #2: Consider the value of ## 1+x^5+x^{10} ##.
Let ## x=\omega ## or ## x=\omega^2 ## and ## \omega^3=1 ##,
so ## x^5=\omega^5=\omega^2\cdot \omega^3=\omega^2\cdot 1=\omega^2 ## and ## x^{10}=(\omega^5)^2=(\omega^2)^2=\omega^4=\omega\cdot \omega^3=\omega ##.
This gives ## 1+x^5+x^{10}=1+\omega^2+\omega ## for ## x=\omega ## and ## 1+x^5+x^{10}=1+(\omega^2)^5+(\omega^2)^{10}=1+\omega+\omega^2 ##.
Thus, ## 1+x^5+x^{10}=1+\omega+\omega^2=0 ##.
Case #3: Consider the value of ## 1+x^9+x^{18} ##.
Let ## x=\omega ## or ## x=\omega^2 ## and ## \omega^3=1 ##,
so ## x^9=(\omega)^9=(\omega^3)^3=1^3=1 ## and ## x^{18}=(\omega)^{18}=(\omega^3)^6=1^6=1 ##.
Thus, ## 1+x^9+x^{18}=1+1+1=3 ##.
Therefore, the values of ## 1+x^2+x^4, 1+x^5+x^{10}, 1+x^9+x^{18} ## are ## 0, 0, 3 ##.
Now we will consider three cases of the following.
Case #1: Consider the value of ## 1+x^2+x^4 ##.
Let ## x=\omega ## or ## x=\omega^2 ## and ## \omega^3=1 ##,
so ## x^4=\omega^4=\omega\cdot \omega^3=\omega ##.
This gives ## 1+x^2+x^4=1+\omega^2+\omega ## for ## x=\omega ## and ## 1+x^2+x^4=1+(\omega^2)^2+(\omega^2)^4=1+\omega+\omega^2 ## for ## x=\omega^2 ##.
Thus, ## 1+x^2+x^4=1+\omega+\omega^2=0 ##.
Case #2: Consider the value of ## 1+x^5+x^{10} ##.
Let ## x=\omega ## or ## x=\omega^2 ## and ## \omega^3=1 ##,
so ## x^5=\omega^5=\omega^2\cdot \omega^3=\omega^2\cdot 1=\omega^2 ## and ## x^{10}=(\omega^5)^2=(\omega^2)^2=\omega^4=\omega\cdot \omega^3=\omega ##.
This gives ## 1+x^5+x^{10}=1+\omega^2+\omega ## for ## x=\omega ## and ## 1+x^5+x^{10}=1+(\omega^2)^5+(\omega^2)^{10}=1+\omega+\omega^2 ##.
Thus, ## 1+x^5+x^{10}=1+\omega+\omega^2=0 ##.
Case #3: Consider the value of ## 1+x^9+x^{18} ##.
Let ## x=\omega ## or ## x=\omega^2 ## and ## \omega^3=1 ##,
so ## x^9=(\omega)^9=(\omega^3)^3=1^3=1 ## and ## x^{18}=(\omega)^{18}=(\omega^3)^6=1^6=1 ##.
Thus, ## 1+x^9+x^{18}=1+1+1=3 ##.
Therefore, the values of ## 1+x^2+x^4, 1+x^5+x^{10}, 1+x^9+x^{18} ## are ## 0, 0, 3 ##.