- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! :)
Knowing that $K$ is a field, $a,b \in K$ different from each other,show that $x-a,x-b$ co-primes.
We suppose that $\exists f(x) \in K(x)$ such that:
$f(x)|x-a$ and $f(x)|x-b$Then $deg f(x) \leq 1$
So, $deg f(x)=0 \text{ or } 1$
If $deg f(x)=1$:
$f(x)=x-c,c\in K$
$x-c|x-a , x-c|x-b \Rightarrow x-c| x-a-x+b \Rightarrow x-c|b-a$ contradiction,because that would mean $deg(x-c) \leq deg(b-a) \Rightarrow 1 \leq 0$
If $deg f(x)=0, f(x)=c,c \in K$
$c|x-a, c|x-b \Rightarrow c|b-a \Rightarrow c|(b-a)^{-1}(b-a) \Rightarrow c|1 \Rightarrow c=\pm 1$
So, $gcd(x-a,x-b)=1$.Do we suppose that $f(x)$ is the greatest common divisor of $x-a$ and $x-b$ or just a common divisor ? Also,at the case when $deg f(x)=1$,why do we take $f(x)=x-c$ ??
Knowing that $K$ is a field, $a,b \in K$ different from each other,show that $x-a,x-b$ co-primes.
We suppose that $\exists f(x) \in K(x)$ such that:
$f(x)|x-a$ and $f(x)|x-b$Then $deg f(x) \leq 1$
So, $deg f(x)=0 \text{ or } 1$
If $deg f(x)=1$:
$f(x)=x-c,c\in K$
$x-c|x-a , x-c|x-b \Rightarrow x-c| x-a-x+b \Rightarrow x-c|b-a$ contradiction,because that would mean $deg(x-c) \leq deg(b-a) \Rightarrow 1 \leq 0$
If $deg f(x)=0, f(x)=c,c \in K$
$c|x-a, c|x-b \Rightarrow c|b-a \Rightarrow c|(b-a)^{-1}(b-a) \Rightarrow c|1 \Rightarrow c=\pm 1$
So, $gcd(x-a,x-b)=1$.Do we suppose that $f(x)$ is the greatest common divisor of $x-a$ and $x-b$ or just a common divisor ? Also,at the case when $deg f(x)=1$,why do we take $f(x)=x-c$ ??