- #1
whatlifeforme
- 219
- 0
Homework Statement
consider the region bounded by the graphs of y=arcsinx, y=0, x = 1/2.
a) find the area of the region.
b) find the centroid of the region.
Homework Equations
[itex]\displaystyle\int_0^{1/2} {arcsinx dx}[/itex]
u=arcsinx; du = [itex]\frac{1}{1-x^2}dx[/itex]dv=dx ; v=x
xarcsinx][itex]^{1/2}_{0}[/itex] - [itex]\displaystyle\int_0^{1/2} {\frac{x}{\sqrt{1=x^2}} dx}[/itex]
= (1/2arcsin(1/2) - 0) + [itex]\sqrt{1-x^2}^{1/2}_{0}[/itex]
answer: [itex]\frac{\pi + 6\sqrt{3}-12}{12}[/itex]
The Attempt at a Solution
i can't get that answer.
in my work i have:
xarcsix][itex]^{1/2}_{0}[/itex] = [itex]\frac{\pi}{12}[/itex]for the other part i get:
[itex]\sqrt{1-x^2}^{1/2}_{0}[/itex] = [itex]\sqrt{1-\frac{1}{4}} - 1[/itex]which i can see how the last term -1 will go to -12/12, and pi/12 goes if front, but how are the getting the middle term, 6[itex]\sqrt{3}[/itex]?
Last edited: