I Area of a Circle: Solving the Equation

  • I
  • Thread starter Thread starter Vector1962
  • Start date Start date
  • Tags Tags
    Area Circle
AI Thread Summary
The discussion focuses on calculating the area of a circle using the equation x^2 + (y - r)^2 = r^2, with the center at (0, r). The original attempt to derive the area through integration resulted in an incorrect formula. Participants suggest that calculating the area of only a portion of the circle, such as half or a quarter, is more appropriate due to the multi-valued nature of y in the full circle equation. They emphasize the importance of showing the integral used to identify errors in the calculation. The conversation highlights the need for clarity in the integration process to achieve the correct area formula.
Vector1962
Messages
61
Reaction score
8
TL;DR Summary
area of a circle in terms of Y if center of circle is at (0 , r) --> A=f(y)
i can write the equation of circle easy enough, x^2+(y-r)^2=r^2. i get A=r^2/2 * asin((y-r)/r) + (y-r)/2 * sqrt(r^2 - (y-r)^2) through integration (using change of variable). Letting u = (y-r) and u^2=(y-r)^2, du= dy. Here's the rub... it's not right... :-) Appreciate and thanks in advance for any pointers... it's been a long time since I've done anything like this.
 
Mathematics news on Phys.org
Vector1962 said:
Summary: area of a circle in terms of Y if center of circle is at (0 , r) --> A=f(y)

i can write the equation of circle easy enough, x^2+(y-r)^2=r^2. i get A=r^2/2 * asin((y-r)/r) + (y-r)/2 * sqrt(r^2 - (y-r)^2) through integration (using change of variable). Letting u = (y-r) and u^2=(y-r)^2, du= dy. Here's the rub... it's not right... :-) Appreciate and thanks in advance for any pointers... it's been a long time since I've done anything like this.
I'm not sure I know what you are doing. Normally, you would calculate the area of half or a quarter of the circle using ##x^2 + (y - r)^2 = r^2##. If you try to do the whole circle, then ##y## is not a single-valued function of ##x##.
 
  • Like
Likes malawi_glenn
Vector1962 said:
i get A=r^2/2 * asin((y-r)/r) + (y-r)/2 * sqrt(r^2 - (y-r)^2) through integration (using change of variable).
I agree with @PeroK's comment. Seeing only your result, but not the integral you used, it's hard to say why your result is wrong.
 
Here is a start for you

## x^2 + (y-r)^2 = r^2 ##

##u = y-r##

## \displaystyle \dfrac{A}{4} = \int_0^r \sqrt{r^2 - x^2}\mathrm{d} x
= r \int_0^r \sqrt{1 - x^2/r^2}\mathrm{d} x##

##x= r \sin t##, ##x = 0 ##gives ##t = 0##, ##x = r## gives ##t = \pi / 2 ##

##\mathrm{d}x = r \cos t \mathrm{d}t ##

## \displaystyle \dfrac{A}{4} = r\int_0^{\pi/2} \sqrt{1 - \sin^2t} \cos t \mathrm{d} t
##
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
4
Views
2K
Replies
4
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
7
Views
10K
Replies
2
Views
2K
Replies
7
Views
2K
Replies
4
Views
2K
Back
Top