- #1
LostInSpace
- 21
- 0
Hi! I'm supposed to find the area of a hyperboloid within a sphere with the radius 2. The hyperboloid and the sphere intersect at [tex]\sqrt{\frac{3}{2}}[/tex] and the intersecting curve is a circle with the radius [tex]\sqrt{\frac{5}{2}}[/tex]. The hyperboloid is defined as
[tex]
\left\lbrace\begin{array}{lcl}
x &=& \sqrt{1+t^2}\cos\varphi \\
y &=& \sqrt{1+t^2}\sin\varphi \\
z &=& t
\end{array}\right.
[/tex]
where [tex]-\sqrt{\frac{3}{2}} \le t \le \sqrt{\frac{3}{2}}[/tex] and [tex]0 \le \varphi < 2\pi[/tex]. The area is given by the integral of the crossproduct of the derivates of t and [tex]\varphi[/tex]over an area:
[tex]
A = \iint_{\Omega}\left|\frac{\partial f}{\partial t}\times\frac{\partial f}{\partial\varphi}\right|\mathrm{d}t\mathrm{d}\varphi
[/tex]
Which yields
[tex]
A = \iint_{\Omega}\sqrt{2t^2 + 1}\mathrm{d}u\mathrm{d}t = 2\pi\int_a^b\sqrt{2t^2 + 1}\mathrm{d}t
[/tex]
where a and b are the limits of t.
Is this correct? Then what? How can I calculate the final integral?
Thanks in advance!
[tex]
\left\lbrace\begin{array}{lcl}
x &=& \sqrt{1+t^2}\cos\varphi \\
y &=& \sqrt{1+t^2}\sin\varphi \\
z &=& t
\end{array}\right.
[/tex]
where [tex]-\sqrt{\frac{3}{2}} \le t \le \sqrt{\frac{3}{2}}[/tex] and [tex]0 \le \varphi < 2\pi[/tex]. The area is given by the integral of the crossproduct of the derivates of t and [tex]\varphi[/tex]over an area:
[tex]
A = \iint_{\Omega}\left|\frac{\partial f}{\partial t}\times\frac{\partial f}{\partial\varphi}\right|\mathrm{d}t\mathrm{d}\varphi
[/tex]
Which yields
[tex]
A = \iint_{\Omega}\sqrt{2t^2 + 1}\mathrm{d}u\mathrm{d}t = 2\pi\int_a^b\sqrt{2t^2 + 1}\mathrm{d}t
[/tex]
where a and b are the limits of t.
Is this correct? Then what? How can I calculate the final integral?
Thanks in advance!
Last edited: