Area of Cone \(z^2 = 4x^2 + 4y^2\) 0-4: Solve & Find Answer

In summary: To assist you in assisting me, the things I do understand are, of course, the radius, the slant height (or hypotenuse in my non-geometry world). I also see that \(z^2 = 4x^2 + 4y^2\mbox{ can be worked to equal }\frac{z}{2}=r\), but I don't know if that is where you came up with \((z/2)\;d\theta\), or how it applies.
  • #1
MacLaddy1
52
0
Hello all,

I've hit a roadblock on a question regarding Surface Integrals. I seem to be having a problem conceptualizing many of these concepts. Anyway, here goes.

Find the area of the following surface using an explicit description of a surface.

The cone \(z^2 = 4x^2 + 4y^2\) for \(0\leq z\leq4\)

I have solved for z and found the dS portion to = \(\sqrt{5}\) dA. This jives with the answer sheet that I have. It's the rest that I seem to be having troubles with.

Since it's a cone, shouldn't I just integrate like so?

\(\sqrt{5}\int_0^{2\pi}\int_0^4 (1)dz rdr \mbox{ for a final answer of }8\pi^2\sqrt5 \mbox{? The solution manual is showing an answer of }4\sqrt5\).

Any assistance, or a point in the right direction, will be greatly appreciated.

Thanks,
Mac
 
Physics news on Phys.org
  • #2
MacLaddy said:
Hello all,

I've hit a roadblock on a question regarding Surface Integrals. I seem to be having a problem conceptualizing many of these concepts. Anyway, here goes.

Find the area of the following surface using an explicit description of a surface.

The cone \(z^2 = 4x^2 + 4y^2\) for \(0\leq z\leq4\)

I have solved for z and found the dS portion to = \(\sqrt{5}\) dA. This jives with the answer sheet that I have. It's the rest that I seem to be having troubles with.

Since it's a cone, shouldn't I just integrate like so?

\(\sqrt{5}\int_0^{2\pi}\int_0^4 (1)dz rdr \mbox{ for a final answer of }8\pi^2\sqrt5 \mbox{? The solution manual is showing an answer of }4\sqrt5\).

Any assistance, or a point in the right direction, will be greatly appreciated.

Thanks,
Mac

First observe that you have a cone with slant height \(2 \sqrt{5}\) and base radius \(2\), so the curved surface area is the circumference of the base (\(4 \pi\)) times the slant heigh over two = \(4 \pi \sqrt{5}\).

Now let's do this using integration. First switch to cylindrical polars, then the surface element is \((z/2)\;d\theta\; (\sqrt{5}/2) dz\), so the area is:

\[A=\int_{z=0}^4 \int_{\theta=0}^{2\pi} \frac{\sqrt{5}}{2} \frac{z}{2} d\theta dz\]

etc...

(you should always draw a picture for these problems if you can)
 
Last edited:
  • #3
CaptainBlack said:
First observe that you have a cone with slant height \(2 \sqrt{5}\) and base radius \(2\), so the curved surface area is the circumference of the base (\(4 \pi\)) times the slant heigh over two = \(4 \pi \sqrt{5}\).

Now let's do this using integration. First switch to cylindrical polars, then the surface element is \((z/2)\;d\theta\; (\sqrt{5}/2) dz\), so the area is:

\[A=\int_{z=0}^4 \int_{\theta=0}^{2\pi} \frac{\sqrt{5}}{2} z d\theta dz\]

etc...

(you should always draw a picture for these problems if you can)

Thanks Captain, I appreciate the assistance.

I do have a couple of follow up questions, as I'm still not quite grasping this as well as I should.

I never actually took geometry, which is funny considering I'm now in Multivariate Calculus, but I haven't really needed it up to this point. So even though I know and can figure things out with simple geometry, it isn't usually the first thing that pops in my head when these problems arise.

I am still having some problems understanding this line,
CaptainBlack said:
Now let's do this using integration. First switch to cylindrical polars, then the surface element is \((z/2)\;d\theta\; (\sqrt{5}/2) dz\), so the area is:

\[A=\int_{z=0}^4 \int_{\theta=0}^{2\pi} \frac{\sqrt{5}}{2} z d\theta dz\]

When doing cylindrical integrals in polar, I was under the impression that I had to use a triple integral? Also, for this particular question above my first instinct would be to use spherical integration, but I guess that would just find the area of the cone?

Can you clarify where you found \((z/2)\;d\theta\; (\sqrt{5}/2) dz\)? Also, why is there an extra factor of "z" in your integrand? Is that similar to the Jacobian rdr, but zdz instead?

To assist you in assisting me, the things I do understand are, of course, the radius, the slant height (or hypotenuse in my non-geometry world). I also see that \(z^2 = 4x^2 + 4y^2\mbox{ can be worked to equal }\frac{z}{2}=r\), but I don't know if that is where you came up with \((z/2)\;d\theta\), or how it applies.

Thanks again, I appreciate the assistance.

Mac
 
  • #4
MacLaddy said:
Thanks Captain, I appreciate the assistance.

I do have a couple of follow up questions, as I'm still not quite grasping this as well as I should.

I never actually took geometry, which is funny considering I'm now in Multivariate Calculus, but I haven't really needed it up to this point. So even though I know and can figure things out with simple geometry, it isn't usually the first thing that pops in my head when these problems arise.

I am still having some problems understanding this line,

You draw a picture of the surface element at a point on the surface where angle subtended by the element is \(\Delta \theta\) and height is \(\Delta z\) and calculate its area for small \(\Delta\)s (so they are replaced by \(d\theta\) and \(dz\) )

When doing cylindrical integrals in polar, I was under the impression that I had to use a triple integral? Also, for this particular question above my first instinct would be to use spherical integration, but I guess that would just find the area of the cone?

Can you clarify where you found \((z/2)\;d\theta\; (\sqrt{5}/2) dz\)? Also, why is there an extra factor of "z" in your integrand? Is that similar to the Jacobian rdr, but zdz instead?

Yes, as you would be able to see if you draw a picture.

To assist you in assisting me, the things I do understand are, of course, the radius, the slant height (or hypotenuse in my non-geometry world). I also see that \(z^2 = 4x^2 + 4y^2\mbox{ can be worked to equal }\frac{z}{2}=r\), but I don't know if that is where you came up with \((z/2)\;d\theta\), or how it applies.

Thanks again, I appreciate the assistance.

The area of a surface patch is \(r\;d\theta dl\) where \(dl\) is the distance in the surface between \(z\) and \(z+dz\) and you replace \(r\) by its equivalent in terms of \(z\).

As I have said repeatedly draw a picture showing the area element on the surface between \(\theta\) and \(\theta+\Delta \theta\) and \(z\) and \(z+\Delta z\) and claculate its area.

CB
 
  • #5
CaptainBlack said:
You draw a picture of the surface element at a point on the surface where angle subtended by the element is \(\Delta \theta\) and height is \(\Delta z\) and calculate its area for small \(\Delta\)s (so they are replaced by \(d\theta\) and \(dz\) )
Yes, as you would be able to see if you draw a picture.
The area of a surface patch is \(r\;d\theta dl\) where \(dl\) is the distance in the surface between \(z\) and \(z+dz\) and you replace \(r\) by its equivalent in terms of \(z\).

As I have said repeatedly draw a picture showing the area element on the surface between \(\theta\) and \(\theta+\Delta \theta\) and \(z\) and \(z+\Delta z\) and claculate its area.

CB

Actually, I did draw a picture, still didn't help.

Thanks anyway.
Mac
 
  • #6
CaptainBlack said:
First observe that you have a cone with slant height \(2 \sqrt{5}\) and base radius \(2\), so the curved surface area is the circumference of the base (\(4 \pi\)) times the slant heigh over two = \(4 \pi \sqrt{5}\).

Now let's do this using integration. First switch to cylindrical polars, then the surface element is \((z/2)\;d\theta\; (\sqrt{5}/2) dz\), so the area is:

\[A=\int_{z=0}^4 \int_{\theta=0}^{2\pi} \frac{\sqrt{5}}{2} z d\theta dz\]

etc...

(you should always draw a picture for these problems if you can)

Just a quick observation,

\(A=\int_{z=0}^4 \int_{\theta=0}^{2\pi} \frac{\sqrt{5}}{2} z d\theta dz \neq 4 \pi \sqrt{5}\)
 
Last edited:
  • #7
MacLaddy said:
Just a quick observation,

\(A=\int_{z=0}^4 \int_{\theta=0}^{2\pi} \frac{\sqrt{5}}{2} z d\theta dz \neq 4 \pi \sqrt{5}\)

$$
\int_0^{2\pi}d\theta = 2\pi\Rightarrow\int_0^4\pi\sqrt{5}zdz = \frac{\pi\sqrt{5}}{2}\left.z^2\right|_0^4 = \frac{16\pi\sqrt{5}}{2} = 8\pi\sqrt{5}
$$
Are you missing a factor of 1/2 with the Jacobian or something?
In post 2, it shows two factors of 1/2 which would be 1/4. Making that correction, we would have the desired results.

CaptainBlack said:
Now let's do this using integration. First switch to cylindrical polars, then the surface element is \((z/2)\;d\theta\; (\sqrt{5}/2) dz\), so the area is:

\[A=\int_{z=0}^4 \int_{\theta=0}^{2\pi} \frac{\sqrt{5}}{2} z d\theta dz\]

etc...

(you should always draw a picture for these problems if you can)


So I think the integral should have been expressed as

$$
\int_{0}^4 \int_{0}^{2\pi} \frac{\sqrt{5}}{4} z d\theta dz$$
 
Last edited by a moderator:
  • #8
I have solved the integral the following way.

$$\int_0^{2\pi}\int_0^2 (\sqrt{5})rdrd\theta = 4\pi\sqrt{5}$$

Thanks everyone for their contributions.
 
Last edited:
  • #9
MacLaddy said:
Just a quick observation,

\(A=\int_{z=0}^4 \int_{\theta=0}^{2\pi} \frac{\sqrt{5}}{2} z d\theta dz \neq 4 \pi \sqrt{5}\)

There is a typo that is obvious if you look at the previous line, that is supposed to be the integral of the area element which has an extra 1/2 in it that has got lost.

Anyway it is fixed now.

CB
 
  • #10

Attachments

  • gash.jpg
    gash.jpg
    8.4 KB · Views: 57

Related to Area of Cone \(z^2 = 4x^2 + 4y^2\) 0-4: Solve & Find Answer

1. What is the formula for finding the area of a cone?

The formula for finding the area of a cone is A = πr(r + √(h^2 + r^2)), where A is the area, r is the radius of the base, and h is the height of the cone.

2. How do you solve for the area of a cone with the given equation z^2 = 4x^2 + 4y^2?

To solve for the area of a cone with the given equation, you need to first rewrite the equation in terms of the radius and height of the cone. Then, use the formula A = πr(r + √(h^2 + r^2)) to find the area.

3. Can you explain the meaning of the variables in the given equation z^2 = 4x^2 + 4y^2?

In the given equation, z represents the height of the cone and x and y represent the radii of the base. The equation shows that the height squared is equal to the sum of the squared radii.

4. How do you find the radius and height of a cone from the given equation z^2 = 4x^2 + 4y^2?

To find the radius and height of a cone from the given equation, you can use the Pythagorean theorem. Set z as the hypotenuse, and x and y as the other two sides. Then, solve for the radius and height using the formula r = √(x^2 + y^2) and h = z.

5. What is the maximum area of the cone when the given equation z^2 = 4x^2 + 4y^2 is solved?

The maximum area of the cone when the given equation is solved is when the radius and height are equal, resulting in a perfect cone. In this case, the maximum area would be equal to πr^2, where r is the radius of the base.

Similar threads

Replies
5
Views
441
  • Calculus and Beyond Homework Help
Replies
3
Views
751
Replies
2
Views
2K
  • Calculus and Beyond Homework Help
Replies
3
Views
929
  • Calculus and Beyond Homework Help
Replies
21
Views
2K
  • Calculus
Replies
30
Views
5K
  • Calculus and Beyond Homework Help
Replies
7
Views
1K
  • Calculus and Beyond Homework Help
Replies
4
Views
2K
Replies
2
Views
4K
Back
Top