- #1
azatkgz
- 186
- 0
This question is quite hard for me.
Find the area between the curve [tex]y=e^{-x}\left|sinx\right|[/tex] and the straight line y=0 for [tex]x\geq 0[/tex]
[tex]\int_{0}^{\infty}e^{-x}\left|sinx\right|dx=-e^{-x}\left|sinx\right|+\int_{0}^{\infty}e^{-x}\left|cosx\right|dx[/tex]
[tex]=-e^{-x}\left|sinx\right|-e^{-x}\left|cosx\right|-\int_{0}^{\infty}e^{-x}\left|sinx\right|dx[/tex]
[tex]\int_{0}^{\infty}e^{-x}\left|sinx\right|dx=\frac{-e^{-x}\left|sinx\right|-e^{-x}\left|cosx\right|}{2}[/tex]
Homework Statement
Find the area between the curve [tex]y=e^{-x}\left|sinx\right|[/tex] and the straight line y=0 for [tex]x\geq 0[/tex]
The Attempt at a Solution
[tex]\int_{0}^{\infty}e^{-x}\left|sinx\right|dx=-e^{-x}\left|sinx\right|+\int_{0}^{\infty}e^{-x}\left|cosx\right|dx[/tex]
[tex]=-e^{-x}\left|sinx\right|-e^{-x}\left|cosx\right|-\int_{0}^{\infty}e^{-x}\left|sinx\right|dx[/tex]
[tex]\int_{0}^{\infty}e^{-x}\left|sinx\right|dx=\frac{-e^{-x}\left|sinx\right|-e^{-x}\left|cosx\right|}{2}[/tex]