MHB Arithmetic progression question

AI Thread Summary
The discussion centers on finding the maximum value of the last term in a k-term arithmetic progression starting with 1, where all terms must be less than or equal to n. The solution provided is the expression 1 + (k-1) * floor((n-1)/(k-1)). The original poster encourages further questions or remarks regarding the validity of this solution. The thread highlights the importance of formulating the problem clearly to derive an effective mathematical expression. The inquiry and subsequent resolution demonstrate a successful engagement with arithmetic progression concepts.
poissonspot
Messages
39
Reaction score
0
Hey,

What is the greatest number a k-term arithmetic progression starting with 1 can end in if each term is less than or equal to n? I'm looking to write this as an expression involving n and k in order to count the number of arithmetic progressions of length k with each term in $[n]$, that is the set of positive integers less than or equal to n.

Thx,

Edit:

It was good to ask the question. Here is the answer: 1+(k-1)*floor((n-1)/(k-1)).
If anyone has any remarks, questions as to how the above is true, shoot!

Thanks again,
 
Last edited:
Mathematics news on Phys.org
Looks like the OP solved his own question, albeit almost 9 years ago.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top