- #1
Machara
- 1
- 0
So I have this problem I'm stuck on wrapping my head around a particular problem "In the sequence a{n}, let a{0}=2. If a{n+1} = 3 a{n} −1, then what is the value of a3?"
I understand it's following the pattern of each term, and that with Arithmetic sequence a{n-1} means you would use the a{n} term immediately prior (e.g solving for a{2} you would use the result of a{1}) but in this particular problem the sequence is a{n+1} which one would assume you would use the result of the term after? since it's Plus 1 not Minus 1, but that doesn't make sense.
On top of I can elaborate the solutions answer on my worksheet to explain what's happening, and it's saying for a{2} you would input the solution from a{1} to solve for a{2} but wouldn't that be implying the sequence is a{n-1} not a{n+1}?
What's the difference? am I missing something?
This is the elaborated solution that the webpage answers for me:
"Explanation:
To find a{3}
, first find a{1} and a{2}. The sequence says a(n+1)=3a{n}−1, and we know a{0}=2. So, we can find the rest of the sequence, starting with a{1}
.
a{0}=2
a{1}=3(2)−1=5
a{2}=3(5)−1=14
a{3}=3(14)−1=41
So, a{3}=41"
I understand it's following the pattern of each term, and that with Arithmetic sequence a{n-1} means you would use the a{n} term immediately prior (e.g solving for a{2} you would use the result of a{1}) but in this particular problem the sequence is a{n+1} which one would assume you would use the result of the term after? since it's Plus 1 not Minus 1, but that doesn't make sense.
On top of I can elaborate the solutions answer on my worksheet to explain what's happening, and it's saying for a{2} you would input the solution from a{1} to solve for a{2} but wouldn't that be implying the sequence is a{n-1} not a{n+1}?
What's the difference? am I missing something?
This is the elaborated solution that the webpage answers for me:
"Explanation:
To find a{3}
, first find a{1} and a{2}. The sequence says a(n+1)=3a{n}−1, and we know a{0}=2. So, we can find the rest of the sequence, starting with a{1}
.
a{0}=2
a{1}=3(2)−1=5
a{2}=3(5)−1=14
a{3}=3(14)−1=41
So, a{3}=41"