- #1
maxmc1027
- 4
- 0
This is an idea I had and felt it worth publishing. The reason fusion is so difficult is because the particles are so light, small, and have difficulty overcoming the coulomb barrier. Well I got to thinking and noticed that it'd be a lot easier to get heavy nuclei to fuse, but naturally they'd be incredibly unstable. Then it hit me, incredible instablility is a GREAT thing! When two heavy nuclei collide and neutrons/protons join or fall off, an unstable ion is inevitably created. Think about it, each atom on the periodic table, including isotopes, is usually stable for the most part, even radioactive elements(stable in terms that they don't randomly explode into several different atoms). When two lead atoms for instance are ionized and accelerated towards each other, the inertia alone would be enough to overcome the coulomb forces, not to mention increased chance of impact due to size. While the collision products are almost completely incalculable, the resulting instability will inevitably result in fission to more stable elements. What's even better is that even these reaction products, radioactive or not, can be reused and accelerated again into something like a lead atom.
An example of how this works would be to think of a rock atop a tall cliff. The rock at this point has a lot of potential energy, but it isn't near the cliff and thus no energy will be produced. The process I speak of is equivalent to pushing the rock to the edge, increasing the chances of falling and thus a much higher chance to reach a ground state(releasing energy in the process). Lead is a stable atom, but only slightly so, a couple more protons or neutrons and it becomes unstable and fissions. I'm not sure what sort of radiations or reaction products it'd give off, but I do have an experimental setup in mind to make it happen. I'd like to see some responses to this topic, and maybe a reason why I don't see ideas like this anywhere else. Thanks for reading.MaxP.S. If this didn't make sense please say something. I'm not great at explaining things =P
An example of how this works would be to think of a rock atop a tall cliff. The rock at this point has a lot of potential energy, but it isn't near the cliff and thus no energy will be produced. The process I speak of is equivalent to pushing the rock to the edge, increasing the chances of falling and thus a much higher chance to reach a ground state(releasing energy in the process). Lead is a stable atom, but only slightly so, a couple more protons or neutrons and it becomes unstable and fissions. I'm not sure what sort of radiations or reaction products it'd give off, but I do have an experimental setup in mind to make it happen. I'd like to see some responses to this topic, and maybe a reason why I don't see ideas like this anywhere else. Thanks for reading.MaxP.S. If this didn't make sense please say something. I'm not great at explaining things =P
Last edited: