- #1
Monoxdifly
MHB
- 284
- 0
The center of circle L is located in the first quadrant and lays on the line y = 2x. If the circle L touches the Y-axis at (0,6), the equation of circle L is ...
a. \(\displaystyle x^2+y^2-3x-6y=0\)
b. \(\displaystyle x^2+y^2-12x-6y=0\)
c. \(\displaystyle x^2+y^2+6x+12y-108=0\)
d. \(\displaystyle x^2+y^2+12x+6y-72=0\)
e. \(\displaystyle x^2+y^2-6x-12y+36=0\)
Since the center (a, b) lays in the line y = 2x then b = 2a.
\(\displaystyle (x-a)^2+(y-b)^2=r^2\)
\(\displaystyle (0-a)^2+(6-b)^2=r^2\)
\(\displaystyle (-a)^2+(6-2a)^2=r^2\)
\(\displaystyle a^2+36-24a+4a^2=r^2\)
\(\displaystyle 5a^2-24a+36=r^2\)
What should I do after this?
a. \(\displaystyle x^2+y^2-3x-6y=0\)
b. \(\displaystyle x^2+y^2-12x-6y=0\)
c. \(\displaystyle x^2+y^2+6x+12y-108=0\)
d. \(\displaystyle x^2+y^2+12x+6y-72=0\)
e. \(\displaystyle x^2+y^2-6x-12y+36=0\)
Since the center (a, b) lays in the line y = 2x then b = 2a.
\(\displaystyle (x-a)^2+(y-b)^2=r^2\)
\(\displaystyle (0-a)^2+(6-b)^2=r^2\)
\(\displaystyle (-a)^2+(6-2a)^2=r^2\)
\(\displaystyle a^2+36-24a+4a^2=r^2\)
\(\displaystyle 5a^2-24a+36=r^2\)
What should I do after this?