MHB [ASK] Find the ratio of the area of triangle BCH and triangle EHD

AI Thread Summary
The discussion focuses on finding the ratio of the areas of triangles BCH and EHD within a rhombus ABCD, where angles A and C are both 45°. It is established that triangles BCH and EHD are similar due to their corresponding angles. The area of triangle BCH is calculated using its base and height, while the area of triangle EHD is derived from its corresponding dimensions. The ratio of the areas simplifies to 1:2, indicating that the area of triangle BCH is half that of triangle EHD. This conclusion is reached through geometric relationships and properties of similar triangles.
Monoxdifly
MHB
Messages
288
Reaction score
0
A parallelogram ABCD has angle A = angle C = 45°. Circle K with the center C intercept the parallelogram through B and D. AD is extended so that it intercepts the circle at E and BE intercepts CD at H. The ratio of the area of triangle BCH and triangle EHD is ...

Here I got that triangle BCH and triangle EHD is similar with angle BCH = angle HDE = 45°, angle CHB = angle DHE = 112.5°, and angle CBH = angle DEH = 22.5°. The area of triangle BCH is ½ × CH × h, where h is the parallelogram's height. The area of triangle EHD is ½ × (r - CH) × r. I stuck at the ratio is (CH × h) : ((r - CH) × r). How do I simplify that? Problem is, I don't know CD's length, so I can't approximate the ratio between CH and DH.
 
Mathematics news on Phys.org
A parallelogram ABCD has angle A = angle C = 45°. Circle K with the center C intercept the parallelogram through B and D. AD is extended so that it intercepts the circle at E and BE intercepts CD at H. The ratio of the area of triangle BCH and triangle EHD is ...

Note parallelogram ABCD is a rhombus with side length $r$ ...

(area of BCH)/(area of EHD) = $\dfrac{r^2}{(r\sqrt{2})^2} = \dfrac{1}{2}$
 
How did you get area of BCH and area of EHD?
 
Monoxdifly said:
How did you get area of BCH and area of EHD?

I didn't get the areas ... I determined the ratio of their respective areas.

From the diagram, let triangle BCH have base r with a perpendicular height h. Since triangle EHD is similar, its corresponding base is r√2 with corresponding height h√2.

$\dfrac{\text{area of BCH}}{\text{area of EHD}} = \dfrac{\frac{1}{2}r \cdot h}{\frac{1}{2} r\sqrt{2} \cdot h\sqrt{2}}$

now ... simplify the right side of the above equation.
 
1 : 2
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top