MHB [ASK} Prove (cos2x+cos2y)/(sin2x−sin2y)=1/tan(x−y)

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
AI Thread Summary
To prove the equation (cos2x + cos2y) / (sin2x - sin2y) = 1 / tan(x - y), one can start with the left-hand side using trigonometric identities. By applying the sum-to-product identities for cosine and sine, the expression simplifies to (cos(x - y) / sin(x - y)). This further reduces to cot(x - y), which is equivalent to 1 / tan(x - y). The proof can be completed in just four steps, demonstrating the equality effectively.
Monoxdifly
MHB
Messages
288
Reaction score
0
Prove that $$\frac{cos2x+cos2y}{sin2x-sin2y}=\frac1{tan(x-y)}$$. Can someone provide me some hints? I tried to manipulate the right-hand expression but got back to square one.
 
Mathematics news on Phys.org
Monoxdifly said:
Prove that $$\frac{cos2x+cos2y}{sin2x-sin2y}=\frac1{tan(x-y)}$$. Can someone provide me some hints? I tried to manipulate the right-hand expression but got back to square one.

Hi Monoxdifly,

You could start with the LHS and the identities:

\begin{align*}
\cos a + \cos b &= 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}\\
\sin a - \sin b &= 2\sin\frac{a-b}{2}\cos\frac{a+b}{2}
\end{align*}
 
castor28 said:
Hi Monoxdifly,

You could start with the LHS and the identities:

\begin{align*}
\cos a + \cos b &= 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}\\
\sin a - \sin b &= 2\sin\frac{a-b}{2}\cos\frac{a+b}{2}
\end{align*}

Ah, let's see...
$$\frac{cos2x+cos2y}{sin2x-sin2y}$$=$$\frac{2cos\frac{2x+2y}{2}cos\frac{2x-2y}{2}}{2sin\frac{2x-2y}{2}cos\frac{2x+2y}{2}}$$=$$\frac{cos(x-y)}{sin(x-y)}$$= cot(x - y) = $$\frac1{tan(x-y)}$$
Wew. Just 4 steps.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top