- #1
Monoxdifly
MHB
- 284
- 0
If f(a) = 2, f'(a) = 1, g(a) = –1, and g'(a) = 2, the value of \(\displaystyle \lim_{x\to a}\frac{g(x)\cdot f(a)-g(a)\cdot f(x)}{x-a}\) is ...
A. 1
B. 3
C. 5
D. 7
E. 9
\(\displaystyle \lim_{x\to a}\frac{g(x)\cdot f(a)-g(a)\cdot f(x)}{x-a}=\lim_{x\to a}\frac{2g(x)+f(x)}{x-a}\). How to determine the f(x) and g(x)? And when to use the info that f'(a) = 1 and g'(a) = 2?
A. 1
B. 3
C. 5
D. 7
E. 9
\(\displaystyle \lim_{x\to a}\frac{g(x)\cdot f(a)-g(a)\cdot f(x)}{x-a}=\lim_{x\to a}\frac{2g(x)+f(x)}{x-a}\). How to determine the f(x) and g(x)? And when to use the info that f'(a) = 1 and g'(a) = 2?