- #1
psie
- 272
- 32
- Homework Statement
- If ##(X_j,\mathcal M_j)## are measurable spaces for ##j=1,2,3##, then ##\bigotimes_1^3\mathcal M_j=(\mathcal M_1\otimes\mathcal M_2)\otimes\mathcal M_3##. Moreover, if ##\mu_j## is a ##\sigma##-finite measure on ##(X_j,\mathcal M_j)##, then ##\mu_1\times\mu_2\times\mu_3=(\mu_1\times\mu_2)\times\mu_3##.
- Relevant Equations
- Above $$\bigotimes_1^3\mathcal M_j = M_1\otimes\mathcal M_2\otimes\mathcal M_3= \sigma (\{ A_1 \times A_2 \times A_3 : A_i \in \mathcal M_i \}),$$and $$(\mathcal M_1\otimes\mathcal M_2)\otimes\mathcal M_3=\sigma (\{ \Omega \times A: \Omega \in \mathcal M_1 \otimes \mathcal M_2,A \in \mathcal M_3 \}).$$ Also, the first ##\sigma##-algebra is the smallest ##\sigma##-algebra such that the projections are measurable.
This is an exercise from Folland's book. Here's my attempt at showing ##\mathcal M_1\otimes\mathcal M_2\otimes\mathcal M_3=(\mathcal M_1\otimes\mathcal M_2)\otimes\mathcal M_3##.
##\subset##: since every measurable rectangle ##A_1 \times A_2## belongs to ##\mathcal M_1 \otimes \mathcal M_2##, the generating set for ##\mathcal M_1\otimes\mathcal M_2\otimes\mathcal M_3## is a subset of ##(\mathcal M_1\otimes\mathcal M_2)\otimes\mathcal M_3##, so also the ##\sigma##-algebra belongs to ##(\mathcal M_1\otimes\mathcal M_2)\otimes\mathcal M_3##.
##\supset##: I'm stuck here. ##\pi_{1,2}:X_1\times X_2\times X_3\to X_1\times X_2## is measurable since ##\pi_{1,2}^{-1}(A_1\times A_2) = A_1\times A_2\times X_3\in \mathcal M_1\otimes\mathcal M_2\otimes\mathcal M_3## for every ##A_1\times A_2\in \mathcal M_1\otimes\mathcal M_2##. For the same reason, so is ##\pi_3:X_1\times X_2\times X_3\to X_3## measurable. I'm a bit lost at what I need to show.
I'm also not sure how to proceed with the rest of the exercise. Appreciate any help.
##\subset##: since every measurable rectangle ##A_1 \times A_2## belongs to ##\mathcal M_1 \otimes \mathcal M_2##, the generating set for ##\mathcal M_1\otimes\mathcal M_2\otimes\mathcal M_3## is a subset of ##(\mathcal M_1\otimes\mathcal M_2)\otimes\mathcal M_3##, so also the ##\sigma##-algebra belongs to ##(\mathcal M_1\otimes\mathcal M_2)\otimes\mathcal M_3##.
##\supset##: I'm stuck here. ##\pi_{1,2}:X_1\times X_2\times X_3\to X_1\times X_2## is measurable since ##\pi_{1,2}^{-1}(A_1\times A_2) = A_1\times A_2\times X_3\in \mathcal M_1\otimes\mathcal M_2\otimes\mathcal M_3## for every ##A_1\times A_2\in \mathcal M_1\otimes\mathcal M_2##. For the same reason, so is ##\pi_3:X_1\times X_2\times X_3\to X_3## measurable. I'm a bit lost at what I need to show.
I'm also not sure how to proceed with the rest of the exercise. Appreciate any help.