- #1
Amad27
- 412
- 1
Hello,
Prove that
$$\lim_{{x}\to{0}} \frac{1}{x}$$
Does not exist by contradiction. So the obvious step:Assume:$$\lim_{{x}\to{0}} \frac{1}{x} = M$$
$| 1/x - M| < \epsilon$ for $|x| <\delta_1$
Any ideas? PLEASE DO NOT SOLVE.
Prove that
$$\lim_{{x}\to{0}} \frac{1}{x}$$
Does not exist by contradiction. So the obvious step:Assume:$$\lim_{{x}\to{0}} \frac{1}{x} = M$$
$| 1/x - M| < \epsilon$ for $|x| <\delta_1$
Any ideas? PLEASE DO NOT SOLVE.