- #1
intervoxel
- 195
- 1
Given the difference equation
[tex]
a_{n+2}+A_n(\lambda)a_{n+1}+B_n(\lambda)a_n=0
[/tex]
where
[tex]
A_n(\lambda)=-\frac{(n+1)(2\delta+\epsilon+3(n+\gamma))+Q}{s(n+2)(n+1+\gamma)}
[/tex]
and
[tex]
B_n(\lambda)=\frac{(n+\alpha)(n+\beta)}{2(n+2)(n+1+\gamma)}
[/tex]
The asymptotic behavior of the coefficients is given by
[tex]
a_n^{(1)}\sim 2^{-n}n^{-1-\lambda/2}\sum_{s=0}^{\infty}\frac{c_s^{(1)}}{n^s}
[/tex]
and
[tex]
a_n^{(2)}\sim n^{-3}\sum_{s=0}^{\infty}\frac{c_s^{(2)}}{n^s}
[/tex]
I have to do the a similar calculation in my research project but I couldn't find out the procedure used. Please, someone can show me the steps to such a solution?
I tried to helplessly follow the text by Saber Elaydi, An Introduction to Difference Equations.
[tex]
a_{n+2}+A_n(\lambda)a_{n+1}+B_n(\lambda)a_n=0
[/tex]
where
[tex]
A_n(\lambda)=-\frac{(n+1)(2\delta+\epsilon+3(n+\gamma))+Q}{s(n+2)(n+1+\gamma)}
[/tex]
and
[tex]
B_n(\lambda)=\frac{(n+\alpha)(n+\beta)}{2(n+2)(n+1+\gamma)}
[/tex]
The asymptotic behavior of the coefficients is given by
[tex]
a_n^{(1)}\sim 2^{-n}n^{-1-\lambda/2}\sum_{s=0}^{\infty}\frac{c_s^{(1)}}{n^s}
[/tex]
and
[tex]
a_n^{(2)}\sim n^{-3}\sum_{s=0}^{\infty}\frac{c_s^{(2)}}{n^s}
[/tex]
I have to do the a similar calculation in my research project but I couldn't find out the procedure used. Please, someone can show me the steps to such a solution?
I tried to helplessly follow the text by Saber Elaydi, An Introduction to Difference Equations.