- #1
Eclair_de_XII
- 1,083
- 91
- Homework Statement
- Define a continuous function ##f:[a,b]\longrightarrow \mathbb{R}## such that ##f(b)>0## and ##f(a)<0##. Prove that there is a real number ##c\in (a,b)## such that ##f(c)=0##.
- Relevant Equations
- A function ##f## is continuous at ##a\in \textrm{dom}(f)## if for all positive ##\epsilon##, there is a ##\delta>0## such that for ##x\in \textrm{dom}(f)##, if ##0<|x-a|<\delta## then ##|f(x)-f(a)|<\epsilon##
Proof goes like this:
(1) Prove the existence of open intervals centered around the end-points of the domain such that the image of the points in these intervals through ##f## has the same sign as the image of the end-point through ##f##. In other words, prove that there is a ##\delta>0## such that if ##b>x>b-\delta##, ##f(x)f(b)>0##; and similarly for ##a##.
(2) Conclude there is a point ##c\in (a,b)## such that for any ##\delta>0##, the image of ##(c-\delta,c+\delta)## contains both positive and negative points.
(3) By definition of continuity, there must be a real number ##L## that ##f(c)## converges to. Reason that ##L## cannot be negative or positive.
===(1)===
Suppose that there are no such intervals. Consider ##b##. Choose ##\epsilon\leq f(b)##. Hence, for any ##\delta>0##, if ##|b-x|<\delta##, then ##f(x)<0##.
\begin{align*}
|f(x)-f(b)|&=&f(b)+|f(x)|\\
&\geq&f(b)\\
&\geq&\epsilon
\end{align*}
This contradicts the fact that ##f## is continuous. Hence, there must be some ##\delta>0## such that ##f(x)>0## if ##b-\delta<x<b##.
===(2)===
Now choose ##c=b-\delta_b## where ##\delta_b>0## with the property that if ##x<b-\delta_b##, then ##f(x)\leq 0##.
Similarly, ##c=a+\delta_a## where ##\delta_a>0## with the property that if ##x>a+\delta_a##, then ##f(x)\geq 0##.
% Note: I feel like I should be invoking completeness here, but wasn't sure if it applies or if it does, how to invoke it.
Let ##\delta_c>0##.
If ##\delta_c+c>x>c=a+\delta_a##, then ##f(x)\geq 0##.
If ##c-\delta_c<x<c=b-\delta_b##, then ##f(x)\leq 0##.
===(3)===
Suppose ##f(c)>0## and choose ##\epsilon\leq f(c)##. Let ##\delta>0## and choose ##x\in (c-\delta,c)##.
Then ##f(x)\leq 0## and:
\begin{align*}
|f(c)-f(x)|&=&-f(x)+f(c)\\
&=&|f(x)|+f(c)\\
&\geq&f(c)\\
&\geq&\epsilon
\end{align*}
Hence, ##f## cannot be continuous at ##x=c## if ##f(c)>0##.
Now suppose ##f(c)<0## and choose ##\epsilon\leq -f(c)##. Let ##\delta>0## and choose ##x\in (c,c+\delta)##.
Then ##f(x)\geq 0##:
\begin{align*}
|f(x)-f(c)|&=&f(x)+(-f(c))\\
&=&|f(x)|-f(c)\\
&\geq&-f(c)\\
&\geq&\epsilon
\end{align*}
Hence, ##f## cannot be continuous at ##x=c## if ##f(c)<0##.
This leaves only the one possibility by the trichotomy of the real numbers.
(1) Prove the existence of open intervals centered around the end-points of the domain such that the image of the points in these intervals through ##f## has the same sign as the image of the end-point through ##f##. In other words, prove that there is a ##\delta>0## such that if ##b>x>b-\delta##, ##f(x)f(b)>0##; and similarly for ##a##.
(2) Conclude there is a point ##c\in (a,b)## such that for any ##\delta>0##, the image of ##(c-\delta,c+\delta)## contains both positive and negative points.
(3) By definition of continuity, there must be a real number ##L## that ##f(c)## converges to. Reason that ##L## cannot be negative or positive.
===(1)===
Suppose that there are no such intervals. Consider ##b##. Choose ##\epsilon\leq f(b)##. Hence, for any ##\delta>0##, if ##|b-x|<\delta##, then ##f(x)<0##.
\begin{align*}
|f(x)-f(b)|&=&f(b)+|f(x)|\\
&\geq&f(b)\\
&\geq&\epsilon
\end{align*}
This contradicts the fact that ##f## is continuous. Hence, there must be some ##\delta>0## such that ##f(x)>0## if ##b-\delta<x<b##.
===(2)===
Now choose ##c=b-\delta_b## where ##\delta_b>0## with the property that if ##x<b-\delta_b##, then ##f(x)\leq 0##.
Similarly, ##c=a+\delta_a## where ##\delta_a>0## with the property that if ##x>a+\delta_a##, then ##f(x)\geq 0##.
% Note: I feel like I should be invoking completeness here, but wasn't sure if it applies or if it does, how to invoke it.
Let ##\delta_c>0##.
If ##\delta_c+c>x>c=a+\delta_a##, then ##f(x)\geq 0##.
If ##c-\delta_c<x<c=b-\delta_b##, then ##f(x)\leq 0##.
===(3)===
Suppose ##f(c)>0## and choose ##\epsilon\leq f(c)##. Let ##\delta>0## and choose ##x\in (c-\delta,c)##.
Then ##f(x)\leq 0## and:
\begin{align*}
|f(c)-f(x)|&=&-f(x)+f(c)\\
&=&|f(x)|+f(c)\\
&\geq&f(c)\\
&\geq&\epsilon
\end{align*}
Hence, ##f## cannot be continuous at ##x=c## if ##f(c)>0##.
Now suppose ##f(c)<0## and choose ##\epsilon\leq -f(c)##. Let ##\delta>0## and choose ##x\in (c,c+\delta)##.
Then ##f(x)\geq 0##:
\begin{align*}
|f(x)-f(c)|&=&f(x)+(-f(c))\\
&=&|f(x)|-f(c)\\
&\geq&-f(c)\\
&\geq&\epsilon
\end{align*}
Hence, ##f## cannot be continuous at ##x=c## if ##f(c)<0##.
This leaves only the one possibility by the trichotomy of the real numbers.
Last edited: