- #1
baby_1
- 159
- 15
- Homework Statement
- Attenuation and Phase constant values in wave equation
- Relevant Equations
- wave equation
Regarding wave equation we are faced with this form
$$\nabla^2 \vec{E}=j\omega \mu \sigma \vec{E}-j\omega \mu\varepsilon \vec{E}=\gamma ^2\vec{E}$$
where
$$\gamma ^2=j\omega \mu \sigma -j\omega \mu\varepsilon $$
$$\gamma =\alpha +j\beta $$
where alpha and beta are attenuation and phase constants respectively. If we have a lossless media(where sigma =0), I need to obtain alpha and beta values:
My attempt:
$$\gamma ^2 =-j\omega \mu\varepsilon =>\gamma ^2=\omega \mu\varepsilon e^{\frac{-j\pi }{2}}=>\gamma=\sqrt{\omega \mu\varepsilon} e^{\frac{-j\pi }{4}}=>\gamma=\sqrt{\omega \mu\varepsilon}(C os(\frac{\pi }{4})+jSin(\frac{\pi }{4}))=>\alpha =\beta => \alpha \neq 0 $$
it means we have a loss value in the equation, However, if we set alpha=0 in the gamma variable all equations are correct. I need to prove alpha is equal to zero when sigma =0.
$$\nabla^2 \vec{E}=j\omega \mu \sigma \vec{E}-j\omega \mu\varepsilon \vec{E}=\gamma ^2\vec{E}$$
where
$$\gamma ^2=j\omega \mu \sigma -j\omega \mu\varepsilon $$
$$\gamma =\alpha +j\beta $$
where alpha and beta are attenuation and phase constants respectively. If we have a lossless media(where sigma =0), I need to obtain alpha and beta values:
My attempt:
$$\gamma ^2 =-j\omega \mu\varepsilon =>\gamma ^2=\omega \mu\varepsilon e^{\frac{-j\pi }{2}}=>\gamma=\sqrt{\omega \mu\varepsilon} e^{\frac{-j\pi }{4}}=>\gamma=\sqrt{\omega \mu\varepsilon}(C os(\frac{\pi }{4})+jSin(\frac{\pi }{4}))=>\alpha =\beta => \alpha \neq 0 $$
it means we have a loss value in the equation, However, if we set alpha=0 in the gamma variable all equations are correct. I need to prove alpha is equal to zero when sigma =0.