Average value of components of angular momentum for a wave packet

AI Thread Summary
The discussion centers on the calculation of angular momentum components for a wave packet, specifically questioning why integrals yield zero when classical mechanics suggests a free particle should have nonzero angular momentum. Participants noted that the y and z components were not shown, and one contributor pointed out an error in the derivative calculation that led to the incorrect zero result. After addressing the mistake, the correct calculation produced the expected nonzero value for the y component, specifically ##bp_0##. The conversation highlights the importance of careful mathematical derivation in quantum mechanics.
Nelsonc
Messages
3
Reaction score
1
Homework Statement
Given a wave packet as shown (see below), find the mean value of angular momentum components L_x, L_y, L_z with regard to point (a,0,-b) where a and b (the impact parameter) are nonzero
Relevant Equations
\frac{1}{\pi^{3/4} \sqrt{\sigma_x\sigma_y\sigma_z}}e^{-(x^2/2{\sigma_x}^2+y^2/2{\sigma_y}^2+z^2/2{\sigma_z}^2)}e^{i(p_0/\hbar)x}
I have typed up the main problem in latex (see photo below)
problem.png

It seems all such integrals evaluates to 0, but that is apparantly unreasonable for in classical mechanics such a free particle is with nonzero angular momentum with respect to y axis.
 
Physics news on Phys.org
Nelsonc said:
It seems all such integrals evaluates to 0, but that is apparantly unreasonable for in classical mechanics such a free particle is with nonzero angular momentum with respect to y axis.
You didn't show your work for the y and z components of angular momentum. You shouldn't get zero for the y component.
 
Thanks for the reminder, but I have already done so and it turns out they all goes to 0, so there must be something awry with my method. In particular, there seems always to be one spacial part of the integrand to be antisymmetric so that the whole integral goes to 0 (please refer to the image attached). Moreover, I know that classically a free particle moving in such fashion would have y angular momentum component being ##bp_0##

problem_2.png
 
In deriving equation (7), check your result for ##\large \frac{\partial \psi'}{\partial x}##. Did you use the product rule when taking the derivative of the product of the Gaussian function and the function ##e^{i(p_0/\hbar)x}##?
 
I see, thanks so much for catching that error! Now the calculation generates ##bp_0## as a result.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top