- #1
jose diez
- 3
- 0
This set-theory theorem is very easy to prove:
(*) if A≈B & C≈D & A∩C=∅ & B∩D=∅ then A∪C≈B∪D
It seems intuitive that if one replaces the strong
A∩C=∅ & B∩D=∅
condition by the weaker
A∩C≈B∩D
the implication
(**) if A≈B & C≈D & A∩C≈B∪∩D then A∪C≈BD
still holds.
(**) does not seem to be much stronger than (*), nevertheless I have been able to prove (**) only using Ax of Choice (ACh). This suggested to me that (**) might be other equivalent to ACh, but I have not found it in the standard lists, nor I have been able to prove that (**) implies ACh.
Does anybody have any clue on this?
(*) if A≈B & C≈D & A∩C=∅ & B∩D=∅ then A∪C≈B∪D
It seems intuitive that if one replaces the strong
A∩C=∅ & B∩D=∅
condition by the weaker
A∩C≈B∩D
the implication
(**) if A≈B & C≈D & A∩C≈B∪∩D then A∪C≈BD
still holds.
(**) does not seem to be much stronger than (*), nevertheless I have been able to prove (**) only using Ax of Choice (ACh). This suggested to me that (**) might be other equivalent to ACh, but I have not found it in the standard lists, nor I have been able to prove that (**) implies ACh.
Does anybody have any clue on this?