- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{b.1.2.3}$
Consider the differential equation
$\displaystyle \dfrac{dy}{dt}=ay-b$
Find the equilibrium solution $y_e$ rewrite as
$y'=ay-b=0$
then
$ay-b=0\implies y_e=\dfrac{b}{a}$
(b) Let $Y(t)=y-y_e$;
thus $Y(t)$ is the deviation from the equilibrium solution.
the differential equation satisfied by $Y(t)$.
so far but ?here is the book answer
Consider the differential equation
$\displaystyle \dfrac{dy}{dt}=ay-b$
Find the equilibrium solution $y_e$ rewrite as
$y'=ay-b=0$
then
$ay-b=0\implies y_e=\dfrac{b}{a}$
(b) Let $Y(t)=y-y_e$;
thus $Y(t)$ is the deviation from the equilibrium solution.
the differential equation satisfied by $Y(t)$.
so far but ?here is the book answer