- #1
karush
Gold Member
MHB
- 3,269
- 5
Find the general solution of the given differential equation, and use it to determine how solutions behave as $ t\to\infty$ $y'+y=5\sin{2t}$
ok I did this first
$u(t)y'+u(t)y=u(i)5\sin{2t}$
then
$\frac{1}{5}u(t)y'+\frac{1}{5}u(t)y=u(i)\sin{2t}$
so far ... couldn't find an esample to follow
____________________________________________
book answer
$y=ce^{−t}+\sin 2t−2\cos 2t$
$\textit{y is asymptotic to sin2t−2cos2t as $t\to\infty$}$
ok I did this first
$u(t)y'+u(t)y=u(i)5\sin{2t}$
then
$\frac{1}{5}u(t)y'+\frac{1}{5}u(t)y=u(i)\sin{2t}$
so far ... couldn't find an esample to follow
____________________________________________
book answer
$y=ce^{−t}+\sin 2t−2\cos 2t$
$\textit{y is asymptotic to sin2t−2cos2t as $t\to\infty$}$
Last edited: