- #1
karush
Gold Member
MHB
- 3,269
- 5
665
$\textsf{Find the general solution of the given differential equation(book answer in red)}$
$$y^\prime + (1/x)y=\sin x \quad x>0, \qquad \color{red}
{\frac{c}{x}+\frac{\sin x}{x}-\cos x} $$
ok first $u=1/x$ and $x=1/u$ then
$$u(x) = \exp\int u \, du = e^{\ln(u)}=u +c$$
proceed or ?
$\tiny{Elementary Differential Equations And Boundary Value Problems, \\
By: William E. Boyce and Richard C. Diprima \\
1969, Second Edition}$
$\textsf{Find the general solution of the given differential equation(book answer in red)}$
$$y^\prime + (1/x)y=\sin x \quad x>0, \qquad \color{red}
{\frac{c}{x}+\frac{\sin x}{x}-\cos x} $$
ok first $u=1/x$ and $x=1/u$ then
$$u(x) = \exp\int u \, du = e^{\ln(u)}=u +c$$
proceed or ?
$\tiny{Elementary Differential Equations And Boundary Value Problems, \\
By: William E. Boyce and Richard C. Diprima \\
1969, Second Edition}$
Last edited: