- #1
karush
Gold Member
MHB
- 3,269
- 5
Find the solution of $y^{\prime} = \dfrac{x(x^2+1)}{4y^3}, \quad y(0)=-\dfrac{1}{\sqrt{2}}$
in explicit form.
rewrite $\dfrac{y}{x}=\dfrac{x(x^2+1)}{4y^3}= y^3\, dy=\dfrac{x(x^2+1)}{4}\, dx$
integrate $\dfrac{y^4}{4}= \dfrac{1}{4}\left(\dfrac{x^4}{4} +\dfrac{ x^2}{2}\right)$
$y^4=\dfrac{x^4}{4} +\dfrac{ x^2}{2}+C$
$y=\left[\dfrac{x^4}{4} +\dfrac{ x^2}{2}+ C\right]^{1/4}$
obtain C $y(0)=\left[\dfrac{0}{4} +\dfrac{ 0}{2}+ C\right]^{1/4}=-\dfrac{1}{\sqrt{2}}
\implies =C^{1/4}=-\dfrac{1}{\sqrt{2}}
=C=-\left(\dfrac{1}{\sqrt{2}}\right)^4=-\dfrac{1}{4}$
finally $y=-\left[\dfrac{x^4}{4} +\dfrac{ x^2}{2}+\dfrac{1}{4}\right]^{1/4}
=-\left[ \dfrac{(x^2+ 1)^2}{4}\right]^{1/4}$
(b) Plot the graph of the solution.
(c)Determine the interval of the solution
book answer $y=−\sqrt{\dfrac{(x^2+1}{2}} \quad [−\infty<x<\infty]$
ok i think there are some bugs in this and probably some suggestions
I wanted to plot this in tikz but did know how to deal with the final eq
mahalo
in explicit form.
rewrite $\dfrac{y}{x}=\dfrac{x(x^2+1)}{4y^3}= y^3\, dy=\dfrac{x(x^2+1)}{4}\, dx$
integrate $\dfrac{y^4}{4}= \dfrac{1}{4}\left(\dfrac{x^4}{4} +\dfrac{ x^2}{2}\right)$
$y^4=\dfrac{x^4}{4} +\dfrac{ x^2}{2}+C$
$y=\left[\dfrac{x^4}{4} +\dfrac{ x^2}{2}+ C\right]^{1/4}$
obtain C $y(0)=\left[\dfrac{0}{4} +\dfrac{ 0}{2}+ C\right]^{1/4}=-\dfrac{1}{\sqrt{2}}
\implies =C^{1/4}=-\dfrac{1}{\sqrt{2}}
=C=-\left(\dfrac{1}{\sqrt{2}}\right)^4=-\dfrac{1}{4}$
finally $y=-\left[\dfrac{x^4}{4} +\dfrac{ x^2}{2}+\dfrac{1}{4}\right]^{1/4}
=-\left[ \dfrac{(x^2+ 1)^2}{4}\right]^{1/4}$
(b) Plot the graph of the solution.
(c)Determine the interval of the solution
book answer $y=−\sqrt{\dfrac{(x^2+1}{2}} \quad [−\infty<x<\infty]$
ok i think there are some bugs in this and probably some suggestions
I wanted to plot this in tikz but did know how to deal with the final eq
mahalo