- #1
karush
Gold Member
MHB
- 3,269
- 5
$\quad\displaystyle
y^{\prime}=
\frac{e^{-x}-e^x}{3+4y},
\quad y(0)=1$
rewrite
$\frac{dy}{dx}=\frac{e^{-x}-e^x}{3+4y}$
separate
$3+4y \, dy = e^{-x}-e^x \, dx$
integrate
$2y^2+3y=-e^{-x}-e^x+c$
well if so far ok presume complete the square ?book answer
$(a)\quad y=-\frac{3}{4}+\frac{1}{4}
+\sqrt{65-8e^x-8e^{-x}}$\\
$(c)\quad|x|<2.0794\textit{ approximately}$
y^{\prime}=
\frac{e^{-x}-e^x}{3+4y},
\quad y(0)=1$
rewrite
$\frac{dy}{dx}=\frac{e^{-x}-e^x}{3+4y}$
separate
$3+4y \, dy = e^{-x}-e^x \, dx$
integrate
$2y^2+3y=-e^{-x}-e^x+c$
well if so far ok presume complete the square ?book answer
$(a)\quad y=-\frac{3}{4}+\frac{1}{4}
+\sqrt{65-8e^x-8e^{-x}}$\\
$(c)\quad|x|<2.0794\textit{ approximately}$
Last edited: