- #1
karush
Gold Member
MHB
- 3,269
- 5
368
Solve the IVP $y'=2(1+x)(1+y^2),\quad y(0)=0$
$\begin{array}{ll}
\textit{separate variables}&
\displaystyle
\left(\dfrac{1}{1+y^2}\right)\ dy
=2(1+x)\ dx\\
\textit{integrate thru}&
\arctan \left(y\right)=2x+x^2+c\\
\textit{plug in x=0 and y=0}&
\arctan 0=0+c\\
&0=c\\
\textit{thus the equation is}&
y=\tan(2x-x^2)
\end{array}$
find where solution attains minimum value
ok wasn't sure about the tangent thing
book answer for min value is -1 but ?
Solve the IVP $y'=2(1+x)(1+y^2),\quad y(0)=0$
$\begin{array}{ll}
\textit{separate variables}&
\displaystyle
\left(\dfrac{1}{1+y^2}\right)\ dy
=2(1+x)\ dx\\
\textit{integrate thru}&
\arctan \left(y\right)=2x+x^2+c\\
\textit{plug in x=0 and y=0}&
\arctan 0=0+c\\
&0=c\\
\textit{thus the equation is}&
y=\tan(2x-x^2)
\end{array}$
find where solution attains minimum value
ok wasn't sure about the tangent thing
book answer for min value is -1 but ?
Last edited: