- #1
Spinnor
Gold Member
- 2,226
- 431
Say we look at a spherical region of the sun where energy is mainly transported by radiation. Say this happens between some particular radius R and R + dr. Let the temperature at R be giving by T(r). At this particular radius let the gravitational acceleration be a reasonably well know function of r, g_sun(r). Assume the temperatures are so high that nearly all matter in this region is ionized. Assume the density of matter at and near R is given by another good function of r, rho_sun(r).
Given the information above show there is, or is not, also a function of all the factors above (might be missing some) that gives the electric polarization in the sun at R given by P(T(R), g_sun(R), rho_sun(R)), however small its value might be at R.
How should I break down the above problem to come up with a back of the envelope answer. The Klein-Nishina formula tells us that even if small, the average outward radial movement of light in the interior of the sun should give a bit of an outward "kick" to charged matter? Because the interaction cross-section of light and matter goes as 1/m^2, the electrons get "kicked" by light more then protons? This is where I get stuck analyzing this problem.
Thanks for any help suggestions moving this problem forward.
Given the information above show there is, or is not, also a function of all the factors above (might be missing some) that gives the electric polarization in the sun at R given by P(T(R), g_sun(R), rho_sun(R)), however small its value might be at R.
How should I break down the above problem to come up with a back of the envelope answer. The Klein-Nishina formula tells us that even if small, the average outward radial movement of light in the interior of the sun should give a bit of an outward "kick" to charged matter? Because the interaction cross-section of light and matter goes as 1/m^2, the electrons get "kicked" by light more then protons? This is where I get stuck analyzing this problem.
Thanks for any help suggestions moving this problem forward.