I Ballentine Equation 5.13 on conservation of momentum

EE18
Messages
112
Reaction score
13
In Chapter 5.3, Ballentine uses geometrical arguments to obtain the initial magnitude of a hydrogen atom's bound electron momentum. How does equation (5.13) obtain? I tried to naively compute
$$p_e^2 \equiv \textbf{p}_e\cdot \textbf{p}_e = p_a^2+p_b^2+p_o^2 + 2\textbf{p}_a\cdot \textbf{p}_b - 2\textbf{p}_a\cdot \textbf{p}_0 - 2\textbf{p}_0\cdot \textbf{p}_b $$ $$= p_a^2+p_b^2+p_o^2 + 2p_ap_b\cos(\pi - \phi) - 2p_ap_0\cos \theta - 2p_bp_0\cos \theta$$
but then could not go any further. Am I misunderstanding the geometrical relationships of the vectors in Figure 5.1?

Screen Shot 2023-03-29 at 10.27.43 AM.png
Screen Shot 2023-03-29 at 10.27.55 AM.png
 
Physics news on Phys.org
EE18 said:
$$p_e^2 \equiv \textbf{p}_e\cdot \textbf{p}_e = p_a^2+p_b^2+p_o^2 + 2\textbf{p}_a\cdot \textbf{p}_b - 2\textbf{p}_a\cdot \textbf{p}_0 - 2\textbf{p}_0\cdot \textbf{p}_b $$ $$= p_a^2+p_b^2+p_o^2 + 2p_ap_b\cos(\pi - \phi) - 2p_ap_0\cos \theta - 2p_bp_0\cos \theta$$
Am I misunderstanding the geometrical relationships of the vectors in Figure 5.1?
The angle between ##\mathbf{P}_a## and ##\mathbf{P}_b## is not ##\pi - \phi##.

##\mathbf{P}_a## lies in the yellow plane that makes angle ##\phi/2## to the horizontal gray plane. You might try finding expressions for the x, y, and z components of ##\mathbf{P}_a## (shown in blue).

1680112505407.png
 
  • Like
Likes Ishika_96_sparkles, malawi_glenn and PeroK
TSny said:
The angle between ##\mathbf{P}_a## and ##\mathbf{P}_b## is not ##\pi - \phi##.

##\mathbf{P}_a## lies in the yellow plane that makes angle ##\phi/2## to the horizontal gray plane. You might try finding expressions for the x, y, and z components of ##\mathbf{P}_a## (shown in blue).

View attachment 324201
Thank you so much for that diagram, it helps me tremendously.

It seems like I have, by symmetry, that ##\textbf{p}_a \cdot \textbf{p}_b = p_{ax}^2 -p_{ay}^2 + p_{az}^2##. It then remains to find these components in terms of the given angles and ##p_a##. Now clearly ##p_{az} = \tan(\phi/2)p_{ay}##, ##p_{az} = p_a \cos \theta##, and ##p_a^2 = p_{ax}^2 +p_{ay}^2 + p_{az}^2## so that at least in theory I have three equations with which I can substitute away ##p_{ax}^2 -p_{ay}^2 + p_{az}^2## in the above in terms of the angles and ##p_a##. However it seems very ugly -- is there a cleaner way to do it or is it necessarily ugly?
 
EE18 said:
Now clearly ##p_{az} = \tan(\phi/2)p_{ay}##, ##p_{az} = p_a \cos \theta##
I think you meant the second equation to represent ##p_{ax}##.

Consider writing ##\mathbf{p}_a## in unit vector notation $$\mathbf{p}_a =p_{ax} \mathbf{i} +p_{ay} \mathbf{j} +p_{az} \mathbf{k}$$ Each of the components can be expressed in terms of the magnitude ##p_a## and the angles ##\theta## and ##\phi/2##. For example, you know ##p_{ax} = p_a \cos \theta##.

Do the same for ##\mathbf{p}_b##.

For ##\mathbf{p}_o## we have simply ##\mathbf{p}_o = p_0 \mathbf{i}##. Then use equation (5.12) to find the component expression for ##\mathbf{p}_e##.
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top