- #1
kairama15
- 31
- 0
Summary:: Using an integral and taylor series to prove the Basel Problem
The Basel problem is a famous math problem. It asked, 'What is the sum of 1/n^2 from n=1 to infinity?'. The solution is pi^2/6. Most proofs are somewhat convoluted. I'm attempting to solve it using calculus.
I notice on wolframalpha.com that the integral of -ln(1-x)/x dx from 0 to 1 is pi^2/6. I also noticed that its taylor series evaluated at 1 is the sum of x^n/n^2 from n=1 to infinity. This is a link between pi^2/6 and the infinite sum of inverse squares.
If I can evaluate this integral, it can prove the Basel problem using just undergraduate calculus. I tried substitutions of u=ln(1-x), u=1-x, 1-x=e^u and even trig substitutions like x=sin(x). I'm having trouble evaluating it. Any ideas?
The Basel problem is a famous math problem. It asked, 'What is the sum of 1/n^2 from n=1 to infinity?'. The solution is pi^2/6. Most proofs are somewhat convoluted. I'm attempting to solve it using calculus.
I notice on wolframalpha.com that the integral of -ln(1-x)/x dx from 0 to 1 is pi^2/6. I also noticed that its taylor series evaluated at 1 is the sum of x^n/n^2 from n=1 to infinity. This is a link between pi^2/6 and the infinite sum of inverse squares.
If I can evaluate this integral, it can prove the Basel problem using just undergraduate calculus. I tried substitutions of u=ln(1-x), u=1-x, 1-x=e^u and even trig substitutions like x=sin(x). I'm having trouble evaluating it. Any ideas?