- #1
sid9221
- 111
- 0
Bases of a Linear transformation (Kernel, Image and Union ?
http://dl.dropbox.com/u/33103477/1linear%20tran.png
For the kernel/null space
[tex] \begin{bmatrix}
3 & 1 & 2 & -1\\
2 & 4 & 1 & -1
\end{bmatrix} = [0]_v [/tex]
Row reducing I get
[tex] \begin{bmatrix}
1 & 0 & \frac{7}{9} & \frac{-2}{9}\\
0 & 1 & \frac{-1}{10} & \frac{-1}{10}
\end{bmatrix} = [0]_v [/tex]
So the basis of the kernel U1 is:
[tex] \begin{pmatrix}
\frac{-7}{9}\\
\frac{1}{10}\\
1\\
0
\end{pmatrix}, \begin{pmatrix}
\frac{2}{9}\\
\frac{1}{10}\\
0\\
1
\end{pmatrix} [/tex]
Now, for the image/range.
I can write the transformation as:
[tex] S=\begin{pmatrix}
1 \\
1 \\
2 \\
3
\end{pmatrix}, \begin{pmatrix}
-1 \\
-3 \\
-8 \\
-27
\end{pmatrix}
[/tex]
So we proceed to find the basis of Span S
[tex] \begin{bmatrix}
1 &-1 \\
1 &-3 \\
2 &-8 \\
3 &-27
\end{bmatrix} [/tex]
Row reducing I get:
[tex] \begin{bmatrix}
1 &0 \\
0 &1 \\
0 &0 \\
0 &0
\end{bmatrix} [/tex]
Which implies S is linearly independant.
So the basis is:[tex] S=\begin{pmatrix}
1 \\
1 \\
2 \\
3
\end{pmatrix}, \begin{pmatrix}
-1 \\
-3 \\
-8 \\
-27
\end{pmatrix}
[/tex]
Now for U1 union U2
Should I just put both the basis together. (After checking if they are all independant ?)
I have no idea about the addition any ideas ??
http://dl.dropbox.com/u/33103477/1linear%20tran.png
For the kernel/null space
[tex] \begin{bmatrix}
3 & 1 & 2 & -1\\
2 & 4 & 1 & -1
\end{bmatrix} = [0]_v [/tex]
Row reducing I get
[tex] \begin{bmatrix}
1 & 0 & \frac{7}{9} & \frac{-2}{9}\\
0 & 1 & \frac{-1}{10} & \frac{-1}{10}
\end{bmatrix} = [0]_v [/tex]
So the basis of the kernel U1 is:
[tex] \begin{pmatrix}
\frac{-7}{9}\\
\frac{1}{10}\\
1\\
0
\end{pmatrix}, \begin{pmatrix}
\frac{2}{9}\\
\frac{1}{10}\\
0\\
1
\end{pmatrix} [/tex]
Now, for the image/range.
I can write the transformation as:
[tex] S=\begin{pmatrix}
1 \\
1 \\
2 \\
3
\end{pmatrix}, \begin{pmatrix}
-1 \\
-3 \\
-8 \\
-27
\end{pmatrix}
[/tex]
So we proceed to find the basis of Span S
[tex] \begin{bmatrix}
1 &-1 \\
1 &-3 \\
2 &-8 \\
3 &-27
\end{bmatrix} [/tex]
Row reducing I get:
[tex] \begin{bmatrix}
1 &0 \\
0 &1 \\
0 &0 \\
0 &0
\end{bmatrix} [/tex]
Which implies S is linearly independant.
So the basis is:[tex] S=\begin{pmatrix}
1 \\
1 \\
2 \\
3
\end{pmatrix}, \begin{pmatrix}
-1 \\
-3 \\
-8 \\
-27
\end{pmatrix}
[/tex]
Now for U1 union U2
Should I just put both the basis together. (After checking if they are all independant ?)
I have no idea about the addition any ideas ??
Last edited by a moderator: