Basic (I think) image/preimage questions

  • Thread starter AxiomOfChoice
  • Start date
In summary, according to Gamelin's Complex Analysis, the equivalences f(A) \subseteq A and f^{-1}(A) \subseteq A are equivalent to z_0 \in F iff f(z_0) \in F.
  • #1
AxiomOfChoice
533
1
Suppose I know that [tex]x\in A \Leftrightarrow f(x)\in A[/tex]. Can someone explain why I know, on the strength of this, that [tex]f(A) \subseteq A[/tex] and [tex]f^{-1}(A) \subseteq A[/tex]?
 
Physics news on Phys.org
  • #2
Actually, I think I've got it (somebody please verify):

[tex]
x\in f(A) \Rightarrow f^{-1}(x) \in A \Rightarrow f(f^{-1}(x)) \in A \Rightarrow x\in A
[/tex]

[tex]
x\in f^{-1}(A) \Rightarrow f(x) \in A \Rightarrow x\in A
[/tex]
 
Last edited:
  • #3
You might want to explain what f and A are. What are domain and codomain of f? A is subset of...?
 
  • #4
Landau said:
You might want to explain what f and A are. What are domain and codomain of f? A is subset of...?

This is all geared toward showing that the Fatou set [tex]F[/tex] and Julia set [tex]J[/tex] of a rational function are completely invariant. Apparently, since [tex]F = J^c[/tex], showing that [tex]f(F) \subseteq F[/tex] and [tex]f(J) \subseteq J[/tex] amounts to showing [tex]f(F) \subseteq F[/tex] and [tex]f^{-1}(F) \subseteq F[/tex], which is apparently equivalent to showing [tex]z_0 \in F[/tex] iff [tex]f(z_0) \in F[/tex].

The above questions about general [tex]A[/tex] and general [tex]f[/tex] is part of my attempt to understand these equivalences.

I should note that "apparently" is a stand-in for "according to Gamelin's Complex Analysis."
 
  • #5
I didn't mean for you to explain the specific problem you're working on (Fatou, Julia sets, rational functions, etc.), but the general A and f.

A general function f still has a domain and a codomain. For expressions like [tex]f(A)\subseteq A[/tex] to make sense, A still has to be a subset of the domain of f, and furthermore A has to be a subset of the codomain of f. That's all information you didn't provide; so: what is f and what is A?
 
  • #6
Landau said:
I didn't mean for you to explain the specific problem you're working on (Fatou, Julia sets, rational functions, etc.), but the general A and f.

A general function f still has a domain and a codomain. For expressions like [tex]f(A)\subseteq A[/tex] to make sense, A still has to be a subset of the domain of f, and furthermore A has to be a subset of the codomain of f. That's all information you didn't provide; so: what is f and what is A?

Ok...well, [tex]A = \mathbb{C}^*[/tex], and [tex]f: \mathbb C^* \to \mathbb C^*[/tex] is a rational function. Does that help?
 
  • #7
For a function [tex]f:A\to A[/tex], the statements [tex]f(A)\subseteq A[/tex] and [tex]f^{-1}(A)\subseteq A[/tex] are trivial:
* f(A) is just the image of f, and by definition the image of f is a subset of the codomain.
* f^-1(A) is by definition a subset of the domain (it consists of elements x in A such that...)

But you were talking about Fatou and Julia sets, which are subsets of domain and codomain.

So, let [tex]B\subseteq A[/tex].

Recall that [tex]f(B):=\{f(x)\ |\ x\in B\}[/tex]. Therefore, the statement [tex]f(B)\subseteq B[/tex] means that [tex]f(x)\in B[/tex] for all [tex]x\in B[/tex]. Hence, the statement [tex]f(B)\subseteq B[/tex] is equivalent to [tex]x\in B\Rightarrow f(x)\in B[/tex].

Recall that [tex]f^{-1}(B):=\{x\in A\ |\ f(x)\in B\}[/tex]. Therefore, the statement [tex]f^{-1}(B)\subseteq B[/tex] means that [tex]x\in B[/tex] for all [tex]f(x)\in B[/tex]. Hence, the statement [tex]f^{-1}(B)\subseteq B[/tex] is equivalent to [tex]f(x)\in B\Rightarrow x\in B[/tex].

Together: ([tex]f(B)\subseteq B[/tex] AND [tex]f^{-1}(B)\subseteq B[/tex]) is equivalent to ([tex]x\in B\Rightarrow f(x)\in B[/tex] AND [tex]f(x)\in B\Rightarrow x\in B[/tex]), and the last is equivalent to [tex]x\in B\Leftrightarrow f(x)\in B[/tex].
 
  • #8
Landau said:
For a function [tex]f:A\to A[/tex], the statements [tex]f(A)\subseteq A[/tex] and [tex]f^{-1}(A)\subseteq A[/tex] are trivial:
* f(A) is just the image of f, and by definition the image of f is a subset of the codomain.
* f^-1(A) is by definition a subset of the domain (it consists of elements x in A such that...)

But you were talking about Fatou and Julia sets, which are subsets of domain and codomain.

So, let [tex]B\subseteq A[/tex].

Recall that [tex]f(B):=\{f(x)\ |\ x\in B\}[/tex]. Therefore, the statement [tex]f(B)\subseteq B[/tex] means that [tex]f(x)\in B[/tex] for all [tex]x\in B[/tex]. Hence, the statement [tex]f(B)\subseteq B[/tex] is equivalent to [tex]x\in B\Rightarrow f(x)\in B[/tex].

Recall that [tex]f^{-1}(B):=\{x\in A\ |\ f(x)\in B\}[/tex]. Therefore, the statement [tex]f^{-1}(B)\subseteq B[/tex] means that [tex]x\in B[/tex] for all [tex]f(x)\in B[/tex]. Hence, the statement [tex]f^{-1}(B)\subseteq B[/tex] is equivalent to [tex]f(x)\in B\Rightarrow x\in B[/tex].

Together: ([tex]f(B)\subseteq B[/tex] AND [tex]f^{-1}(B)\subseteq B[/tex]) is equivalent to ([tex]x\in B\Rightarrow f(x)\in B[/tex] AND [tex]f(x)\in B\Rightarrow x\in B[/tex]), and the last is equivalent to [tex]x\in B\Leftrightarrow f(x)\in B[/tex].

Wow. That was very helpful. Thanks a lot.

Here's another question, and I think if I'm right here, I can leave this behind: Does [tex]F \subseteq (f(F^c))^c[/tex] imply [tex]F \subseteq f(F)[/tex]?
 
  • #9
AxiomOfChoice said:
Wow. That was very helpful. Thanks a lot.
You're welcome!
Here's another question, and I think if I'm right here, I can leave this behind: Does [tex]F \subseteq (f(F^c))^c[/tex] imply [tex]F \subseteq f(F)[/tex]?
Too bad, this is not true. A very simple counter-example:
Take A={1,2,3}, define f:A->A by f(1)=f(2)=2 and f(3)=3. For the subset F={1,2} we now have the following:
f(F)={2}
f(F^c)^c=A\{f(3}={1,2,3}\{3}={1,2}.

Hence [tex]F\subseteq f(F^c)^c[/tex] ({1,2} is contained in {1,2}), but [tex]F\subseteq f(F)[/tex] does NOT hold ({1,2} is NOT contained in {2}).
 
  • #10
Landau said:
Too bad, this is not true. A very simple counter-example:
Take A={1,2,3}, define f:A->A by f(1)=f(2)=2 and f(3)=3. For the subset F={1,2} we now have the following:
f(F)={2}
f(F^c)^c=A\{f(3}={1,2,3}\{3}={1,2}.

Hence [tex]F\subseteq f(F^c)^c[/tex] ({1,2} is contained in {1,2}), but [tex]F\subseteq f(F)[/tex] does NOT hold ({1,2} is NOT contained in {2}).

Yeah, I actually thought about this complication after I'd posted. But what if we assume [tex]f[/tex] is onto? Do we still have the same problem?
 
  • #11
AxiomOfChoice said:
But what if we assume [tex]f[/tex] is onto? Do we still have the same problem?
No, then it's true. Proof:

Assume [tex]F\subseteq (f(F^c))^c[/tex]. This means [tex]x\in F\Rightarrow (\forall y\in F^c: x\neq f(y))[/tex].
Let [tex]x\in F[/tex]. Since f is onto, there exists [tex]z\in A[/tex] such that [tex]x=f(z)[/tex]. So [tex]z\in A\backslash F^c=F[/tex], from which it follows that [tex]x\in f(F)[/tex]. We have proven [tex]x\in F\Rightarrow x\in f(F)[/tex], i.e. [tex]F\subseteq f(F)[/tex].
 

FAQ: Basic (I think) image/preimage questions

What is the difference between an image and a preimage?

An image is the output of a function or mapping, while a preimage is the input that produces that specific output. In other words, an image is the result of applying a function to a preimage.

How do you find the image of a given preimage?

To find the image of a preimage, you need to apply the function or mapping to the preimage. This will produce the corresponding output or image.

Can a preimage have multiple images?

Yes, a preimage can have multiple images. This means that there can be more than one input that produces the same output when applying the function or mapping.

How do you determine if an image is also a preimage?

If an image is also a preimage, it means that it is both the input and the output of a function or mapping. To determine this, you can check if the image is equal to the preimage when applying the function.

What is the importance of understanding basic image/preimage questions in math and science?

Understanding basic image/preimage questions is important in math and science because it helps us to better understand functions and mappings, which are fundamental concepts in these fields. It also allows us to accurately represent and analyze relationships between variables and make predictions based on these relationships.

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
4
Views
1K
Replies
3
Views
2K
Replies
6
Views
1K
Replies
6
Views
2K
Back
Top