- #1
Peter Yu
- 19
- 1
I do not understand a work example in the book: ‘Quantum Mechanics DeMystified”.
On page 212, part of Example 7-5:
Given: Let { |a> |b> } be an orthonormal two-dimensional basis
Let Operator A be given by:
A = |a>< a |- i| a><b |+ i| b><a |- |b><b |
Then: (The following part I do not understand)
A squared = (|a>< a|- i| a><b |+ i| b><a |- |b><b |) (|a>< a |- i| a><b |+ i| b><a |- |b><b |)
=|a>< a|(|a>< a |) + |a>< a|(- i| a><b |)- i| a><b |( i| b><a |) - i| a><b |(- |b><b |)
+ i| b><a |(|a>< a|) + i| b><a |(- i| a><b |)- |b><b |( i| b><a |)- |b><b |(- |b><b |)
= |a>< a|- i| a><b |+|a>< a|+ i| a><b |+|b><b |+ i| b><a |- i| b><a |+|b><b |
= 2|a>< a| + 2|b><b |
Most grateful if someone could help!
On page 212, part of Example 7-5:
Given: Let { |a> |b> } be an orthonormal two-dimensional basis
Let Operator A be given by:
A = |a>< a |- i| a><b |+ i| b><a |- |b><b |
Then: (The following part I do not understand)
A squared = (|a>< a|- i| a><b |+ i| b><a |- |b><b |) (|a>< a |- i| a><b |+ i| b><a |- |b><b |)
=|a>< a|(|a>< a |) + |a>< a|(- i| a><b |)- i| a><b |( i| b><a |) - i| a><b |(- |b><b |)
+ i| b><a |(|a>< a|) + i| b><a |(- i| a><b |)- |b><b |( i| b><a |)- |b><b |(- |b><b |)
= |a>< a|- i| a><b |+|a>< a|+ i| a><b |+|b><b |+ i| b><a |- i| b><a |+|b><b |
= 2|a>< a| + 2|b><b |
Most grateful if someone could help!