- #1
Kashmir
- 468
- 74
How do we apply the momentum operator on a wavefunction?
Wikipedia says
> the momentum operator can be written in the position basis as: ##{ }^{[2]}##
##
\hat{\mathbf{p}}=-i \hbar \nabla
##
where ##\nabla## is the gradient operator, ##\hbar## is the reduced Planck constant, and ##i## is the imaginary unit.
Does this mean that ##\hat{P} \psi=-i \hbar \nabla \psi=-i \hbar\left(\hat{i} \frac{\partial}{\partial x} \psi+\hat{\jmath} \frac{\partial}{\partial y} \psi+\hat{k} \frac{\partial}{\partial z} \psi\right)~?##
I'm not sure this is correct
Can anyone please help me
Wikipedia says
> the momentum operator can be written in the position basis as: ##{ }^{[2]}##
##
\hat{\mathbf{p}}=-i \hbar \nabla
##
where ##\nabla## is the gradient operator, ##\hbar## is the reduced Planck constant, and ##i## is the imaginary unit.
Does this mean that ##\hat{P} \psi=-i \hbar \nabla \psi=-i \hbar\left(\hat{i} \frac{\partial}{\partial x} \psi+\hat{\jmath} \frac{\partial}{\partial y} \psi+\hat{k} \frac{\partial}{\partial z} \psi\right)~?##
I'm not sure this is correct
Can anyone please help me