Basics: Object on Incline, Forces (Im Hopeless) Help

In summary, the object weight 100 grams and began sliding down an incline measuring 21 degrees to the horizontal. The x component was right but the y component was incorrect, assuming that gravity was 9.8m/s^2. If you solve for mu without considering angle, it will be 0.3512-.9114mu, but if you consider angle, then the mu will be tantheta.
  • #1
MourningTide
6
0

Homework Statement



Object weighing 100 grams is on a surface which is inclined to an angle where the mass just overcame the coefficient of friction (which is unknown) and started sliding down. Angle was measured to be 21 degrees to the horizontal.

What I want to know is would the mass have a constant velocity, thus acceleration of 0?
Why?

Also is this right in resolving the problem into x and y components:
x-component = mgsintheta - mumgcostheta (where mu = coefficient of friction)
y-component = None, as the object does not move in directions perpendicular to the plane.


Would greatly appreciate help, stressed out and struggling all day...
 
Physics news on Phys.org
  • #2
yes, the block is first at rest so v=0, and when it JUST slips and starts to slide down it isn't accelerating because the angle is measured as low as possible so that the object just overcomes the coefficient of friction.

your x component is right but for your y you should have N-mgcostheta or mgcostheta-N depending on how you setup your coordinates.
 
  • #3
Ok thank you very much !

Now is it possible to calculate the value of the coefficient of friction without using tan theta?
Resolving the situation into x and y components, and assuming gravity to be 9.8m/s^2,

m*a = (mgsintheta) - (mumgcostheta)
m = 0.1kg
a = 0
theta = 21 degrees

0 = 0.3512 - (mu * 0.9114)

How do I go from here?

Sorry to be a pain...
 
  • #4
well if you solve 0=mgsintheta-mumgcostheta you get mu=tantheta.

You can also continue it numerically how you have it. just solve for mu in 0=.3512-.9114mu which is the same as taking tan theta.

I don't think there's a way to solve for mu without dealing with angle's since the coefficient of friction depends on the angle at which the object begins to slip or slides at a constant velocity.
 
  • #5
http://www.pha.jhu.edu/~broholm/l10/node2.html

If you use LaTeX the text will be more legible. It's easy, and it's fun.

Some remarks...

If you choose x to be parallel and y perpendicular to the incline:

[tex]F_x = mg \sin \theta - \mu F_N[/tex]

[tex]F_y = F_N - mg \cos \theta[/tex]

If no motion in the y direction [tex]F_y = 0[/tex]

If the coefficient of friction is the same whether the object is at rest or in motion there will be no acceleration and [tex]F_x = 0[/tex].

But if the friction is lower when the object is in motion there will be an acceleration.
 
Last edited by a moderator:

FAQ: Basics: Object on Incline, Forces (Im Hopeless) Help

What is an object on an incline?

An object on an incline is a scientific term used to describe an object that is placed on a surface that is at an angle, rather than being completely flat. This angle affects the movement and behavior of the object, as well as the forces acting upon it.

What forces are acting on an object on an incline?

There are typically two main forces acting on an object on an incline: gravity and the normal force. Gravity is the force that pulls the object towards the center of the Earth, while the normal force is the force exerted by the surface to prevent the object from sinking into it. Other forces, such as friction, may also come into play depending on the situation.

How do I calculate the net force on an object on an incline?

To calculate the net force on an object on an incline, you must first determine the individual forces acting on the object. Then, you can use the formula Fnet = ma (net force = mass x acceleration) to find the net force. Keep in mind that for an object on an incline, the acceleration will be in the direction of the incline, rather than straight down.

How does the angle of an incline affect the forces on an object?

The angle of an incline can greatly impact the forces acting on an object. The steeper the incline, the greater the component of gravity pulling the object down the incline. This can result in a larger net force and greater acceleration for the object. Additionally, the angle can also affect the normal force and the amount of friction acting on the object.

What are some real-world examples of objects on an incline?

There are many real-world examples of objects on an incline, such as a car driving up a steep hill, a person walking up a ramp, or a ball rolling down a slide. Understanding the forces at play in these situations can help us better understand the movement and behavior of objects in our everyday lives.

Similar threads

Replies
5
Views
929
Replies
1
Views
2K
Replies
7
Views
4K
Replies
19
Views
2K
Replies
3
Views
1K
Replies
7
Views
1K
Replies
1
Views
1K
Back
Top